Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem \(\frac{3}{4} - \frac{2}{3}\), we follow these steps:
1. Find a common denominator for the fractions:
To subtract fractions with different denominators, we first need to find a common denominator. The denominators are 4 and 3. The least common multiple (LCM) of 4 and 3 is 12. So, we will use 12 as the common denominator.
2. Adjust the numerators based on the common denominator:
- For \(\frac{3}{4}\), we need to convert it to an equivalent fraction with a denominator of 12. To do this, we multiply the numerator and denominator by 3 (since \(4 \times 3 = 12\)):
[tex]\[ \frac{3}{4} \times \frac{3}{3} = \frac{9}{12} \][/tex]
- For \(\frac{2}{3}\), we need to convert it to an equivalent fraction with a denominator of 12. To do this, we multiply the numerator and denominator by 4 (since \(3 \times 4 = 12\)):
[tex]\[ \frac{2}{3} \times \frac{4}{4} = \frac{8}{12} \][/tex]
3. Subtract the numerators while keeping the common denominator:
Now that both fractions have the same denominator, we can subtract the numerators:
[tex]\[ \frac{9}{12} - \frac{8}{12} = \frac{9 - 8}{12} = \frac{1}{12} \][/tex]
So, [tex]\(\frac{3}{4} - \frac{2}{3} = \frac{1}{12}\)[/tex].
1. Find a common denominator for the fractions:
To subtract fractions with different denominators, we first need to find a common denominator. The denominators are 4 and 3. The least common multiple (LCM) of 4 and 3 is 12. So, we will use 12 as the common denominator.
2. Adjust the numerators based on the common denominator:
- For \(\frac{3}{4}\), we need to convert it to an equivalent fraction with a denominator of 12. To do this, we multiply the numerator and denominator by 3 (since \(4 \times 3 = 12\)):
[tex]\[ \frac{3}{4} \times \frac{3}{3} = \frac{9}{12} \][/tex]
- For \(\frac{2}{3}\), we need to convert it to an equivalent fraction with a denominator of 12. To do this, we multiply the numerator and denominator by 4 (since \(3 \times 4 = 12\)):
[tex]\[ \frac{2}{3} \times \frac{4}{4} = \frac{8}{12} \][/tex]
3. Subtract the numerators while keeping the common denominator:
Now that both fractions have the same denominator, we can subtract the numerators:
[tex]\[ \frac{9}{12} - \frac{8}{12} = \frac{9 - 8}{12} = \frac{1}{12} \][/tex]
So, [tex]\(\frac{3}{4} - \frac{2}{3} = \frac{1}{12}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.