Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
When a carbonated soft drink is stored in a closed container, it maintains a high pressure. This high pressure keeps the carbon dioxide (\(CO_2\)) dissolved in the liquid, favoring the formation of carbonic acid (\(H_2CO_3\)), as per the equilibrium reaction:
[tex]\[ H_2CO_3 \rightleftharpoons CO_2 + H_2O \][/tex]
Here is a detailed explanation step-by-step about what happens when the container is left open:
1. Pressure Change:
- Inside a closed container, the pressure is relatively high, maintaining a significant amount of dissolved \(CO_2\) in the drink.
- When the container is opened, the internal pressure of the container decreases and equalizes with the atmospheric pressure.
2. Effect on Equilibrium:
- According to Le Chatelier's Principle, reducing the pressure shifts the equilibrium position to favor the formation of more \(CO_2\) gas and less \(H_2CO_3\).
- As the pressure decreases, \(H_2CO_3\) decomposes to release \(CO_2\) and \(H_2O\) as a response to the lower pressure.
3. Carbon Addition and Escape:
- The decreased pressure means that \(CO_2\) gas is no longer held in the solution.
- This causes \(CO_2\) to escape from the liquid into the air.
- Escaping \(CO_2\) results in the loss of carbonation (the fizz).
4. Final Result:
- As more \(CO_2\) escapes, less \(H_2CO_3\) can be formed, and the drink becomes flat because of the loss of \(CO_2\) gas which forms the bubbles.
Therefore, the primary reason why a carbonated soft drink loses its carbonation when the container is left open is due to the decrease in pressure, which favors the formation of [tex]\(H_2CO_3\)[/tex]. This decrease in pressure drives the reaction to release [tex]\(CO_2\)[/tex] gas from the liquid, leading to the loss of carbonation.
[tex]\[ H_2CO_3 \rightleftharpoons CO_2 + H_2O \][/tex]
Here is a detailed explanation step-by-step about what happens when the container is left open:
1. Pressure Change:
- Inside a closed container, the pressure is relatively high, maintaining a significant amount of dissolved \(CO_2\) in the drink.
- When the container is opened, the internal pressure of the container decreases and equalizes with the atmospheric pressure.
2. Effect on Equilibrium:
- According to Le Chatelier's Principle, reducing the pressure shifts the equilibrium position to favor the formation of more \(CO_2\) gas and less \(H_2CO_3\).
- As the pressure decreases, \(H_2CO_3\) decomposes to release \(CO_2\) and \(H_2O\) as a response to the lower pressure.
3. Carbon Addition and Escape:
- The decreased pressure means that \(CO_2\) gas is no longer held in the solution.
- This causes \(CO_2\) to escape from the liquid into the air.
- Escaping \(CO_2\) results in the loss of carbonation (the fizz).
4. Final Result:
- As more \(CO_2\) escapes, less \(H_2CO_3\) can be formed, and the drink becomes flat because of the loss of \(CO_2\) gas which forms the bubbles.
Therefore, the primary reason why a carbonated soft drink loses its carbonation when the container is left open is due to the decrease in pressure, which favors the formation of [tex]\(H_2CO_3\)[/tex]. This decrease in pressure drives the reaction to release [tex]\(CO_2\)[/tex] gas from the liquid, leading to the loss of carbonation.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.