Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the expression equivalent to \(\left(2 x^4 y\right)^3\), follow these steps:
1. Identify the components involved in the expression:
- The base numerical coefficient is \(2\).
- The variable \(x\) is raised to the power of 4: \(x^4\).
- The variable \(y\) is raised to the power of 1: \(y\).
2. Apply the exponent to each component:
- For the numerical coefficient \(2\): \((2)^3\).
- For the variable \(x\) raised to the power of 4: \((x^4)^3\).
- For the variable \(y\) raised to the power of 1: \((y)^3\).
3. Calculate each component separately:
- For the numerical coefficient: \((2)^3 = 2 \times 2 \times 2 = 8\).
- For the variable \(x\) with exponents multiplied: \((x^4)^3 = x^{4 \times 3} = x^{12}\).
- For the variable \(y\) with exponents multiplied: \((y)^3 = y^{1 \times 3} = y^3\).
4. Combine the results to form the simplified expression:
- Combining the calculated components, we get: \(8 x^{12} y^3\).
Thus, the expression equivalent to [tex]\(\left(2 x^4 y\right)^3\)[/tex] is [tex]\(\boxed{8 x^{12} y^3}\)[/tex].
1. Identify the components involved in the expression:
- The base numerical coefficient is \(2\).
- The variable \(x\) is raised to the power of 4: \(x^4\).
- The variable \(y\) is raised to the power of 1: \(y\).
2. Apply the exponent to each component:
- For the numerical coefficient \(2\): \((2)^3\).
- For the variable \(x\) raised to the power of 4: \((x^4)^3\).
- For the variable \(y\) raised to the power of 1: \((y)^3\).
3. Calculate each component separately:
- For the numerical coefficient: \((2)^3 = 2 \times 2 \times 2 = 8\).
- For the variable \(x\) with exponents multiplied: \((x^4)^3 = x^{4 \times 3} = x^{12}\).
- For the variable \(y\) with exponents multiplied: \((y)^3 = y^{1 \times 3} = y^3\).
4. Combine the results to form the simplified expression:
- Combining the calculated components, we get: \(8 x^{12} y^3\).
Thus, the expression equivalent to [tex]\(\left(2 x^4 y\right)^3\)[/tex] is [tex]\(\boxed{8 x^{12} y^3}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.