Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the equation of a circle with a given center and radius, we use the standard form of the circle's equation:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where \((h, k)\) is the center of the circle and \(r\) is the radius.
Given:
- The center of the circle \((h, k) = (3.2, -2.1)\)
- The radius \(r = 4.3\)
We substitute these values into the standard form equation:
1. Replace \(h\) with \(3.2\):
[tex]\[ (x - 3.2)^2 \][/tex]
2. Replace \(k\) with \(-2.1\):
[tex]\[ (y - (-2.1))^2 = (y + 2.1)^2 \][/tex]
3. Replace \(r\) with \(4.3\):
[tex]\[ (4.3)^2 = 18.49 \][/tex]
Thus, the equation becomes:
[tex]\[ (x - 3.2)^2 + (y + 2.1)^2 = 18.49 \][/tex]
Next, we match this equation to the given options:
- Option A: [tex]$(x+3.2)^2+(y-2.1)^2=4.3$[/tex]
- This does not match our derived equation, as it does not correctly represent the center and the radius squared is not correct.
- Option B: [tex]$(x+2.1)^2+(y-3.2)^2=8.6$[/tex]
- The placement of the center coordinates is incorrect and the radius value is not squared.
- Option C: [tex]$(x-2.1)^2-(y+3.2)^2=(4.3)^2$[/tex]
- The circle’s center coordinates are reversed and it has an inappropriate subtraction operator.
- Option D: [tex]$(x-3.2)^2+(y+2.1)^2=(4.3)^2$[/tex]
- This correctly represents the center \((3.2, -2.1)\) and the radius squared.
Therefore, the correct equation of the circle is:
[tex]\[ \boxed{(x - 3.2)^2 + (y + 2.1)^2 = (4.3)^2} \][/tex]
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where \((h, k)\) is the center of the circle and \(r\) is the radius.
Given:
- The center of the circle \((h, k) = (3.2, -2.1)\)
- The radius \(r = 4.3\)
We substitute these values into the standard form equation:
1. Replace \(h\) with \(3.2\):
[tex]\[ (x - 3.2)^2 \][/tex]
2. Replace \(k\) with \(-2.1\):
[tex]\[ (y - (-2.1))^2 = (y + 2.1)^2 \][/tex]
3. Replace \(r\) with \(4.3\):
[tex]\[ (4.3)^2 = 18.49 \][/tex]
Thus, the equation becomes:
[tex]\[ (x - 3.2)^2 + (y + 2.1)^2 = 18.49 \][/tex]
Next, we match this equation to the given options:
- Option A: [tex]$(x+3.2)^2+(y-2.1)^2=4.3$[/tex]
- This does not match our derived equation, as it does not correctly represent the center and the radius squared is not correct.
- Option B: [tex]$(x+2.1)^2+(y-3.2)^2=8.6$[/tex]
- The placement of the center coordinates is incorrect and the radius value is not squared.
- Option C: [tex]$(x-2.1)^2-(y+3.2)^2=(4.3)^2$[/tex]
- The circle’s center coordinates are reversed and it has an inappropriate subtraction operator.
- Option D: [tex]$(x-3.2)^2+(y+2.1)^2=(4.3)^2$[/tex]
- This correctly represents the center \((3.2, -2.1)\) and the radius squared.
Therefore, the correct equation of the circle is:
[tex]\[ \boxed{(x - 3.2)^2 + (y + 2.1)^2 = (4.3)^2} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.