Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's determine if the centers of the given circles lie in the third quadrant. The third quadrant is defined by the condition that both the \( x \) and \( y \) coordinates of the center must be negative.
For each circle, we'll analyze the information provided:
### Circle A: \((x+16)^2 + (y+3)^2 = 17\)
- Center:
[tex]\[(x+16)^2 \rightarrow x + 16 = 0 \implies x = -16\][/tex]
[tex]\[(y+3)^2 \rightarrow y + 3 = 0 \implies y = -3\][/tex]
- Coordinates of Center: \((-16, -3)\)
### Circle B: \((x+14)^2 + (y-14)^2 = 84\)
- Center:
[tex]\[(x+14)^2 \rightarrow x + 14 = 0 \implies x = -14\][/tex]
[tex]\[(y-14)^2 \rightarrow y - 14 = 0 \implies y = 14\][/tex]
- Coordinates of Center: \((-14, 14)\)
### Circle C: \((x+3)^2 + (y-6)^2 = 44\)
- Center:
[tex]\[(x+3)^2 \rightarrow x + 3 = 0 \implies x = -3\][/tex]
[tex]\[(y-6)^2 \rightarrow y - 6 = 0 \implies y = 6\][/tex]
- Coordinates of Center: \((-3, 6)\)
### Circle D: \((x+9)^2 + (y+12)^2 = 36\)
- Center:
[tex]\[(x+9)^2 \rightarrow x + 9 = 0 \implies x = -9\][/tex]
[tex]\[(y+12)^2 \rightarrow y + 12 = 0 \implies y = -12\][/tex]
- Coordinates of Center: \((-9, -12)\)
#### Analysis:
- The center of Circle A is \((-16, -3)\), which is in the third quadrant because both coordinates are negative.
- The center of Circle B is \((-14, 14)\), which is not in the third quadrant since the \( y \)-coordinate is positive.
- The center of Circle C is \((-3, 6)\), which is not in the third quadrant since the \( y \)-coordinate is positive.
- The center of Circle D is \((-9, -12)\), which is in the third quadrant because both coordinates are negative.
### Conclusion:
Circles with their centers in the third quadrant are:
- Circle A
- Circle D
So, the circles that have their centers in the third quadrant are A and D.
For each circle, we'll analyze the information provided:
### Circle A: \((x+16)^2 + (y+3)^2 = 17\)
- Center:
[tex]\[(x+16)^2 \rightarrow x + 16 = 0 \implies x = -16\][/tex]
[tex]\[(y+3)^2 \rightarrow y + 3 = 0 \implies y = -3\][/tex]
- Coordinates of Center: \((-16, -3)\)
### Circle B: \((x+14)^2 + (y-14)^2 = 84\)
- Center:
[tex]\[(x+14)^2 \rightarrow x + 14 = 0 \implies x = -14\][/tex]
[tex]\[(y-14)^2 \rightarrow y - 14 = 0 \implies y = 14\][/tex]
- Coordinates of Center: \((-14, 14)\)
### Circle C: \((x+3)^2 + (y-6)^2 = 44\)
- Center:
[tex]\[(x+3)^2 \rightarrow x + 3 = 0 \implies x = -3\][/tex]
[tex]\[(y-6)^2 \rightarrow y - 6 = 0 \implies y = 6\][/tex]
- Coordinates of Center: \((-3, 6)\)
### Circle D: \((x+9)^2 + (y+12)^2 = 36\)
- Center:
[tex]\[(x+9)^2 \rightarrow x + 9 = 0 \implies x = -9\][/tex]
[tex]\[(y+12)^2 \rightarrow y + 12 = 0 \implies y = -12\][/tex]
- Coordinates of Center: \((-9, -12)\)
#### Analysis:
- The center of Circle A is \((-16, -3)\), which is in the third quadrant because both coordinates are negative.
- The center of Circle B is \((-14, 14)\), which is not in the third quadrant since the \( y \)-coordinate is positive.
- The center of Circle C is \((-3, 6)\), which is not in the third quadrant since the \( y \)-coordinate is positive.
- The center of Circle D is \((-9, -12)\), which is in the third quadrant because both coordinates are negative.
### Conclusion:
Circles with their centers in the third quadrant are:
- Circle A
- Circle D
So, the circles that have their centers in the third quadrant are A and D.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.