Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the equation \( 9^x = \frac{1}{3} \times \sqrt{3} \) for \( x \) step-by-step.
### Step 1: Simplify the Right-Hand Side
First, let's simplify the expression on the right-hand side:
[tex]\[ \frac{1}{3} \times \sqrt{3} \][/tex]
The square root of 3 is approximately \( \sqrt{3} \approx 1.7320508075688772 \).
Therefore:
[tex]\[ \frac{1}{3} \times \sqrt{3} \approx \frac{1}{3} \times 1.7320508075688772 \approx 0.5773502691896257 \][/tex]
### Step 2: Rewrite the Equation
Rewrite the equation with the simplified right-hand side:
[tex]\[ 9^x = 0.5773502691896257 \][/tex]
### Step 3: Apply Logarithms
To solve for \( x \), we apply the logarithm on both sides. A common choice is the natural logarithm (ln), but any logarithm base can be used. We use the logarithm properties:
[tex]\[ x = \log_9(0.5773502691896257) \][/tex]
### Step 4: Change of Base Formula
We need to express \( \log_9 (0.5773502691896257) \) in terms of more commonly used logarithms. The change of base formula for logarithms is:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
where \( c \) can be any positive number, commonly we use base 10 (common logarithm) or base \( e \) (natural logarithm).
Using base \( e \) (natural logarithm), we get:
[tex]\[ x = \frac{\ln(0.5773502691896257)}{\ln(9)} \][/tex]
We know:
[tex]\[ \ln(0.5773502691896257) \approx -0.551 \][/tex]
[tex]\[ \ln(9) \approx 2.197 \][/tex]
Thus:
[tex]\[ x = \frac{-0.551}{2.197} \approx -0.25 \][/tex]
### Conclusion
The value of \( x \) that satisfies the equation \( 9^x = \frac{1}{3} \times \sqrt{3} \) is:
[tex]\[ x = -0.25 \][/tex]
So:
[tex]\[ x \approx -0.25 \][/tex]
### Step 1: Simplify the Right-Hand Side
First, let's simplify the expression on the right-hand side:
[tex]\[ \frac{1}{3} \times \sqrt{3} \][/tex]
The square root of 3 is approximately \( \sqrt{3} \approx 1.7320508075688772 \).
Therefore:
[tex]\[ \frac{1}{3} \times \sqrt{3} \approx \frac{1}{3} \times 1.7320508075688772 \approx 0.5773502691896257 \][/tex]
### Step 2: Rewrite the Equation
Rewrite the equation with the simplified right-hand side:
[tex]\[ 9^x = 0.5773502691896257 \][/tex]
### Step 3: Apply Logarithms
To solve for \( x \), we apply the logarithm on both sides. A common choice is the natural logarithm (ln), but any logarithm base can be used. We use the logarithm properties:
[tex]\[ x = \log_9(0.5773502691896257) \][/tex]
### Step 4: Change of Base Formula
We need to express \( \log_9 (0.5773502691896257) \) in terms of more commonly used logarithms. The change of base formula for logarithms is:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
where \( c \) can be any positive number, commonly we use base 10 (common logarithm) or base \( e \) (natural logarithm).
Using base \( e \) (natural logarithm), we get:
[tex]\[ x = \frac{\ln(0.5773502691896257)}{\ln(9)} \][/tex]
We know:
[tex]\[ \ln(0.5773502691896257) \approx -0.551 \][/tex]
[tex]\[ \ln(9) \approx 2.197 \][/tex]
Thus:
[tex]\[ x = \frac{-0.551}{2.197} \approx -0.25 \][/tex]
### Conclusion
The value of \( x \) that satisfies the equation \( 9^x = \frac{1}{3} \times \sqrt{3} \) is:
[tex]\[ x = -0.25 \][/tex]
So:
[tex]\[ x \approx -0.25 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.