At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the correct answers, we need to calculate the lengths of the sides of triangle \( \triangle ABC \) using the distance formula. The distance formula between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Let's calculate the distances:
1. Length of \( AB \)
The coordinates of points \( A \) and \( B \) are \((-2, 5)\) and \((-4, -2)\), respectively.
[tex]\[ AB = \sqrt{((-4) - (-2))^2 + ((-2) - 5)^2} = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \approx 7.2801 \][/tex]
2. Length of \( AC \)
The coordinates of points \( A \) and \( C \) are \((-2, 5)\) and \((3, -4)\), respectively.
[tex]\[ AC = \sqrt{((3) - (-2))^2 + ((-4) - 5)^2} = \sqrt{(5)^2 + (-9)^2} = \sqrt{25 + 81} = \sqrt{106} \approx 10.2956 \][/tex]
3. Length of \( BC \)
The coordinates of points \( B \) and \( C \) are \((-4, -2)\) and \((3, -4)\), respectively.
[tex]\[ BC = \sqrt{((3) - (-4))^2 + ((-4) - (-2))^2} = \sqrt{(7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.2801 \][/tex]
Having calculated the side lengths:
- \( AB \approx 7.2801 \)
- \( AC \approx 10.2956 \)
- \( BC \approx 7.2801 \)
To classify the triangle, we compare the side lengths:
- Since \( AB \approx 7.2801 \) and \( BC \approx 7.2801 \) and \( AC \approx 10.2956 \), we notice that only two sides are equal.
- This makes \( \triangle ABC \) an isosceles triangle.
So, the final answer is:
- The length of \( AB \) is \( \approx 7.2801 \)
- The length of \( AC \) is \( \approx 10.2956 \)
- The length of \( BC \) is \( \approx 7.2801 \)
- Therefore, the triangle is isosceles
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Let's calculate the distances:
1. Length of \( AB \)
The coordinates of points \( A \) and \( B \) are \((-2, 5)\) and \((-4, -2)\), respectively.
[tex]\[ AB = \sqrt{((-4) - (-2))^2 + ((-2) - 5)^2} = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \approx 7.2801 \][/tex]
2. Length of \( AC \)
The coordinates of points \( A \) and \( C \) are \((-2, 5)\) and \((3, -4)\), respectively.
[tex]\[ AC = \sqrt{((3) - (-2))^2 + ((-4) - 5)^2} = \sqrt{(5)^2 + (-9)^2} = \sqrt{25 + 81} = \sqrt{106} \approx 10.2956 \][/tex]
3. Length of \( BC \)
The coordinates of points \( B \) and \( C \) are \((-4, -2)\) and \((3, -4)\), respectively.
[tex]\[ BC = \sqrt{((3) - (-4))^2 + ((-4) - (-2))^2} = \sqrt{(7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.2801 \][/tex]
Having calculated the side lengths:
- \( AB \approx 7.2801 \)
- \( AC \approx 10.2956 \)
- \( BC \approx 7.2801 \)
To classify the triangle, we compare the side lengths:
- Since \( AB \approx 7.2801 \) and \( BC \approx 7.2801 \) and \( AC \approx 10.2956 \), we notice that only two sides are equal.
- This makes \( \triangle ABC \) an isosceles triangle.
So, the final answer is:
- The length of \( AB \) is \( \approx 7.2801 \)
- The length of \( AC \) is \( \approx 10.2956 \)
- The length of \( BC \) is \( \approx 7.2801 \)
- Therefore, the triangle is isosceles
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.