Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the inequality \( -8 \leq 8 + y \) step by step and graph the solution.
Step 1: Isolate the variable \( y \).
The inequality is given as:
[tex]\[ -8 \leq 8 + y \][/tex]
To isolate \( y \), subtract 8 from both sides of the inequality:
[tex]\[ -8 - 8 \leq y \][/tex]
Step 2: Simplify the inequality.
When you simplify the left side:
[tex]\[ -16 \leq y \][/tex]
This can be rewritten as:
[tex]\[ y \geq -16 \][/tex]
Step 3: Graph the solution.
To graph \( y \geq -16 \), follow these steps:
1. Draw a number line.
2. Locate -16 on the number line.
3. Shade the region to the right of -16, indicating all numbers greater than or equal to -16.
4. Put a closed circle on -16 to show that -16 is included in the solution set.
Here is what the graph looks like:
[tex]\[ \begin{array}{c} \text{------•=========} \\ \text{ -16 } \end{array} \][/tex]
The shaded portion of the number line starts at -16 and extends to the right, covering all values greater than or equal to -16.
In summary, the solution to the inequality [tex]\( -8 \leq 8 + y \)[/tex] is [tex]\( y \geq -16 \)[/tex], and the graph represents all numbers greater than or equal to -16.
Step 1: Isolate the variable \( y \).
The inequality is given as:
[tex]\[ -8 \leq 8 + y \][/tex]
To isolate \( y \), subtract 8 from both sides of the inequality:
[tex]\[ -8 - 8 \leq y \][/tex]
Step 2: Simplify the inequality.
When you simplify the left side:
[tex]\[ -16 \leq y \][/tex]
This can be rewritten as:
[tex]\[ y \geq -16 \][/tex]
Step 3: Graph the solution.
To graph \( y \geq -16 \), follow these steps:
1. Draw a number line.
2. Locate -16 on the number line.
3. Shade the region to the right of -16, indicating all numbers greater than or equal to -16.
4. Put a closed circle on -16 to show that -16 is included in the solution set.
Here is what the graph looks like:
[tex]\[ \begin{array}{c} \text{------•=========} \\ \text{ -16 } \end{array} \][/tex]
The shaded portion of the number line starts at -16 and extends to the right, covering all values greater than or equal to -16.
In summary, the solution to the inequality [tex]\( -8 \leq 8 + y \)[/tex] is [tex]\( y \geq -16 \)[/tex], and the graph represents all numbers greater than or equal to -16.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.