Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which equation represents the word sentence "The quotient of a number \(b\) and 0.3 equals negative 10", let's carefully analyze the arithmetic expression described in the sentence.
1. Understanding the term "quotient":
- The "quotient" refers to the result of division.
2. Identifying the quantities involved:
- The number \(b\).
- The number \(0.3\).
3. Setting up the equation:
- According to the sentence, the quotient of \(b\) and \(0.3\) is given as negative 10.
- Mathematically, this can be expressed as:
[tex]\[ \frac{b}{0.3} = -10 \][/tex]
4. Analyzing the options:
- Option A: \(0.3b = 10\) does not match because it represents multiplying \(b\) by \(0.3\) and setting it equal to \(10\), which is not a quotient.
- Option B: \(\frac{b}{0.3} = -10\) correctly represents the division of \(b\) by \(0.3\) and equates it to \(-10\).
- Option C: \(\frac{0.3}{b} = -10\) incorrectly represents the division of \(0.3\) by \(b\), which is not the quotient described in the sentence.
- Option D: \(\frac{b}{0.3} = 10\) represents the division of \(b\) by \(0.3\) but equates it to positive 10, not negative 10.
Thus, the correct equation that represents the word sentence "The quotient of a number \(b\) and \(0.3\) equals negative 10" is:
[tex]\[ \boxed{\frac{b}{0.3} = -10} \][/tex]
1. Understanding the term "quotient":
- The "quotient" refers to the result of division.
2. Identifying the quantities involved:
- The number \(b\).
- The number \(0.3\).
3. Setting up the equation:
- According to the sentence, the quotient of \(b\) and \(0.3\) is given as negative 10.
- Mathematically, this can be expressed as:
[tex]\[ \frac{b}{0.3} = -10 \][/tex]
4. Analyzing the options:
- Option A: \(0.3b = 10\) does not match because it represents multiplying \(b\) by \(0.3\) and setting it equal to \(10\), which is not a quotient.
- Option B: \(\frac{b}{0.3} = -10\) correctly represents the division of \(b\) by \(0.3\) and equates it to \(-10\).
- Option C: \(\frac{0.3}{b} = -10\) incorrectly represents the division of \(0.3\) by \(b\), which is not the quotient described in the sentence.
- Option D: \(\frac{b}{0.3} = 10\) represents the division of \(b\) by \(0.3\) but equates it to positive 10, not negative 10.
Thus, the correct equation that represents the word sentence "The quotient of a number \(b\) and \(0.3\) equals negative 10" is:
[tex]\[ \boxed{\frac{b}{0.3} = -10} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.