At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the inequality \( f(x) = x^2 + 2x - 15 \leq 0 \), we will analyze the quadratic function \( f(x) \) and determine where it is less than or equal to zero. Here's the step-by-step process:
1. Identify the quadratic function and the inequality:
[tex]\[ f(x) = x^2 + 2x - 15 \][/tex]
We need to find the values of \( x \) for which \( f(x) \leq 0 \).
2. Find the roots of the quadratic equation:
The roots of the equation \( x^2 + 2x - 15 = 0 \) can be found using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 2 \), and \( c = -15 \).
Calculate the discriminant:
[tex]\[ b^2 - 4ac = 2^2 - 4(1)(-15) = 4 + 60 = 64 \][/tex]
Now, find the roots:
[tex]\[ x = \frac{-2 \pm \sqrt{64}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm 8}{2} \][/tex]
This results in two roots:
[tex]\[ x = \frac{-2 + 8}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x = \frac{-2 - 8}{2} = \frac{-10}{2} = -5 \][/tex]
Therefore, the roots of the quadratic equation are \( x = -5 \) and \( x = 3 \).
3. Determine the intervals to test:
The roots \( x = -5 \) and \( x = 3 \) divide the real number line into three intervals:
- \( (-\infty, -5) \)
- \( (-5, 3) \)
- \( (3, \infty) \)
4. Test the sign of the function in each interval:
- For \( x \in (-\infty, -5) \), choose a test point such as \( x = -6 \):
[tex]\[ f(-6) = (-6)^2 + 2(-6) - 15 = 36 - 12 - 15 = 9 \][/tex]
Since \( 9 > 0 \), \( f(x) > 0 \) in \( (-\infty, -5) \).
- For \( x \in (-5, 3) \), choose a test point such as \( x = 0 \):
[tex]\[ f(0) = (0)^2 + 2(0) - 15 = -15 \][/tex]
Since \( -15 \leq 0 \), \( f(x) \leq 0 \) in \( (-5, 3) \).
- For \( x \in (3, \infty) \), choose a test point such as \( x = 4 \):
[tex]\[ f(4) = (4)^2 + 2(4) - 15 = 16 + 8 - 15 = 9 \][/tex]
Since \( 9 > 0 \), \( f(x) > 0 \) in \( (3, \infty) \).
5. Conclusion:
Based on the test points, the quadratic function \( f(x) \) is less than or equal to zero in the interval \( [-5, 3] \).
Therefore, the solution to the inequality \( x^2 + 2x - 15 \leq 0 \) is:
[tex]\[ x \in [-5, 3] \][/tex]
This means that the inequality holds for all [tex]\( x \)[/tex] in the interval from [tex]\(-5\)[/tex] to [tex]\(3\)[/tex], inclusive.
1. Identify the quadratic function and the inequality:
[tex]\[ f(x) = x^2 + 2x - 15 \][/tex]
We need to find the values of \( x \) for which \( f(x) \leq 0 \).
2. Find the roots of the quadratic equation:
The roots of the equation \( x^2 + 2x - 15 = 0 \) can be found using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 2 \), and \( c = -15 \).
Calculate the discriminant:
[tex]\[ b^2 - 4ac = 2^2 - 4(1)(-15) = 4 + 60 = 64 \][/tex]
Now, find the roots:
[tex]\[ x = \frac{-2 \pm \sqrt{64}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm 8}{2} \][/tex]
This results in two roots:
[tex]\[ x = \frac{-2 + 8}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x = \frac{-2 - 8}{2} = \frac{-10}{2} = -5 \][/tex]
Therefore, the roots of the quadratic equation are \( x = -5 \) and \( x = 3 \).
3. Determine the intervals to test:
The roots \( x = -5 \) and \( x = 3 \) divide the real number line into three intervals:
- \( (-\infty, -5) \)
- \( (-5, 3) \)
- \( (3, \infty) \)
4. Test the sign of the function in each interval:
- For \( x \in (-\infty, -5) \), choose a test point such as \( x = -6 \):
[tex]\[ f(-6) = (-6)^2 + 2(-6) - 15 = 36 - 12 - 15 = 9 \][/tex]
Since \( 9 > 0 \), \( f(x) > 0 \) in \( (-\infty, -5) \).
- For \( x \in (-5, 3) \), choose a test point such as \( x = 0 \):
[tex]\[ f(0) = (0)^2 + 2(0) - 15 = -15 \][/tex]
Since \( -15 \leq 0 \), \( f(x) \leq 0 \) in \( (-5, 3) \).
- For \( x \in (3, \infty) \), choose a test point such as \( x = 4 \):
[tex]\[ f(4) = (4)^2 + 2(4) - 15 = 16 + 8 - 15 = 9 \][/tex]
Since \( 9 > 0 \), \( f(x) > 0 \) in \( (3, \infty) \).
5. Conclusion:
Based on the test points, the quadratic function \( f(x) \) is less than or equal to zero in the interval \( [-5, 3] \).
Therefore, the solution to the inequality \( x^2 + 2x - 15 \leq 0 \) is:
[tex]\[ x \in [-5, 3] \][/tex]
This means that the inequality holds for all [tex]\( x \)[/tex] in the interval from [tex]\(-5\)[/tex] to [tex]\(3\)[/tex], inclusive.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.