Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To analyze the nature of the roots for the equation \( 3x^2 - 8x + 5 = 5x^2 \), we first need to rewrite it in the standard form of a quadratic equation: \( ax^2 + bx + c = 0 \).
Given:
[tex]\[ 3x^2 - 8x + 5 = 5x^2 \][/tex]
Let's rearrange the equation to bring all terms to one side:
[tex]\[ 3x^2 - 8x + 5 - 5x^2 = 0 \][/tex]
Combine like terms:
[tex]\[ -2x^2 - 8x + 5 = 0 \][/tex]
Multiply the entire equation by -1 to make \( ax^2 \) positive:
[tex]\[ 2x^2 - 8x + 5 = 0 \][/tex]
Here, we have:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = -8 \][/tex]
[tex]\[ c = 5 \][/tex]
To determine the nature of the roots, we calculate the discriminant (\(\Delta\)) of the quadratic equation, which is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute \( a \), \( b \), and \( c \) into the discriminant formula:
[tex]\[ \Delta = (-8)^2 - 4(2)(5) \][/tex]
[tex]\[ \Delta = 64 - 40 \][/tex]
[tex]\[ \Delta = 24 \][/tex]
Now, we interpret the discriminant:
- If \(\Delta > 0\), the equation has two distinct real roots.
- If \(\Delta = 0\), the equation has exactly one real root (repeated).
- If \(\Delta < 0\), the equation has two complex roots.
In this case, the discriminant (\(\Delta\)) is 24, which is greater than 0. Therefore, the quadratic equation \( 2x^2 - 8x + 5 = 0 \) has two distinct real roots.
Thus, the correct statement is:
The discriminant is greater than 0, so there are two real roots.
Given:
[tex]\[ 3x^2 - 8x + 5 = 5x^2 \][/tex]
Let's rearrange the equation to bring all terms to one side:
[tex]\[ 3x^2 - 8x + 5 - 5x^2 = 0 \][/tex]
Combine like terms:
[tex]\[ -2x^2 - 8x + 5 = 0 \][/tex]
Multiply the entire equation by -1 to make \( ax^2 \) positive:
[tex]\[ 2x^2 - 8x + 5 = 0 \][/tex]
Here, we have:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = -8 \][/tex]
[tex]\[ c = 5 \][/tex]
To determine the nature of the roots, we calculate the discriminant (\(\Delta\)) of the quadratic equation, which is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute \( a \), \( b \), and \( c \) into the discriminant formula:
[tex]\[ \Delta = (-8)^2 - 4(2)(5) \][/tex]
[tex]\[ \Delta = 64 - 40 \][/tex]
[tex]\[ \Delta = 24 \][/tex]
Now, we interpret the discriminant:
- If \(\Delta > 0\), the equation has two distinct real roots.
- If \(\Delta = 0\), the equation has exactly one real root (repeated).
- If \(\Delta < 0\), the equation has two complex roots.
In this case, the discriminant (\(\Delta\)) is 24, which is greater than 0. Therefore, the quadratic equation \( 2x^2 - 8x + 5 = 0 \) has two distinct real roots.
Thus, the correct statement is:
The discriminant is greater than 0, so there are two real roots.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.