Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the values of \( m \) for which the graph of the quadratic equation \( y = 3x^2 + 7x + m \) has two \( x \)-intercepts, we need to examine the discriminant of the quadratic equation.
A quadratic equation in standard form \( ax^2 + bx + c = 0 \) has a discriminant \(\Delta\), given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
The nature of the roots of the quadratic equation depends on the value of the discriminant \(\Delta\):
- If \(\Delta > 0\), the equation has two distinct real roots, which implies the graph has two \( x \)-intercepts.
- If \(\Delta = 0\), the equation has exactly one real root, which implies the graph has one \( x \)-intercept (the vertex of the parabola touches the \( x \)-axis).
- If \(\Delta < 0\), the equation has no real roots, which implies the graph has no \( x \)-intercepts.
For the given equation \( y = 3x^2 + 7x + m \):
[tex]\[ a = 3, \quad b = 7, \quad c = m \][/tex]
We want the discriminant to be greater than zero (\(\Delta > 0\)) for the graph to have two \( x \)-intercepts:
[tex]\[ \Delta = b^2 - 4ac > 0 \][/tex]
Substituting the values of \( a \), \( b \), and \( c \):
[tex]\[ 7^2 - 4 \cdot 3 \cdot m > 0 \][/tex]
[tex]\[ 49 - 12m > 0 \][/tex]
Solving for \( m \):
[tex]\[ 49 > 12m \][/tex]
[tex]\[ \frac{49}{12} > m \][/tex]
[tex]\[ m < \frac{49}{12} \][/tex]
Therefore, the quadratic equation \( y = 3x^2 + 7x + m \) has two \( x \)-intercepts when \( m < \frac{49}{12} \).
So, the correct answer is:
[tex]\[ m < \frac{49}{12} \][/tex]
A quadratic equation in standard form \( ax^2 + bx + c = 0 \) has a discriminant \(\Delta\), given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
The nature of the roots of the quadratic equation depends on the value of the discriminant \(\Delta\):
- If \(\Delta > 0\), the equation has two distinct real roots, which implies the graph has two \( x \)-intercepts.
- If \(\Delta = 0\), the equation has exactly one real root, which implies the graph has one \( x \)-intercept (the vertex of the parabola touches the \( x \)-axis).
- If \(\Delta < 0\), the equation has no real roots, which implies the graph has no \( x \)-intercepts.
For the given equation \( y = 3x^2 + 7x + m \):
[tex]\[ a = 3, \quad b = 7, \quad c = m \][/tex]
We want the discriminant to be greater than zero (\(\Delta > 0\)) for the graph to have two \( x \)-intercepts:
[tex]\[ \Delta = b^2 - 4ac > 0 \][/tex]
Substituting the values of \( a \), \( b \), and \( c \):
[tex]\[ 7^2 - 4 \cdot 3 \cdot m > 0 \][/tex]
[tex]\[ 49 - 12m > 0 \][/tex]
Solving for \( m \):
[tex]\[ 49 > 12m \][/tex]
[tex]\[ \frac{49}{12} > m \][/tex]
[tex]\[ m < \frac{49}{12} \][/tex]
Therefore, the quadratic equation \( y = 3x^2 + 7x + m \) has two \( x \)-intercepts when \( m < \frac{49}{12} \).
So, the correct answer is:
[tex]\[ m < \frac{49}{12} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.