Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find out how many grams of \( N_2 \) are required to produce 1.7 grams of ammonia (\( NH_3 \)), we can follow a systematic approach using stoichiometry and the molar masses of the substances involved.
1. Determine the Molar Masses:
- Molar mass of \( N_2 \): 28.02 g/mol
- Molar mass of \( NH_3 \): 17.03 g/mol
2. Calculate the Moles of \( NH_3 \) Produced:
- Desired mass of \( NH_3 \): 1.7 grams
- Moles of \( NH_3 \) can be calculated using its molar mass:
[tex]\[ \text{Moles of } NH_3 = \frac{\text{mass of } NH_3}{\text{molar mass of } NH_3} = \frac{1.7 \text{ grams}}{17.03 \text{ g/mol}} \][/tex]
This calculation gives approximately 0.09982 moles of \( NH_3 \).
3. Use the Stoichiometry of the Balanced Reaction:
- According to the balanced chemical equation:
[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]
- This reaction tells us that 1 mole of \( N_2 \) produces 2 moles of \( NH_3 \).
4. Calculate the Moles of \( N_2 \) Needed:
- From the stoichiometry of the reaction:
[tex]\[ \text{Moles of } N_2 = \frac{\text{Moles of } NH_3}{2} = \frac{0.09982 \text{ moles}}{2} \][/tex]
This calculation gives approximately 0.04991 moles of \( N_2 \).
5. Convert Moles of \( N_2 \) to Grams:
- Using the molar mass of \( N_2 \):
[tex]\[ \text{Mass of } N_2 = \text{moles of } N_2 \times \text{molar mass of } N_2 = 0.04991 \text{ moles} \times 28.02 \text{ g/mol} \][/tex]
This calculation gives approximately 1.3985 grams of \( N_2 \).
Therefore, to form 1.7 grams of ammonia ([tex]\( NH_3 \)[/tex]), you need approximately 1.4 grams of nitrogen gas ([tex]\( N_2 \)[/tex]). Thus, the closest correct choice is [tex]\(\boxed{1.4 \text{ g}}\)[/tex].
1. Determine the Molar Masses:
- Molar mass of \( N_2 \): 28.02 g/mol
- Molar mass of \( NH_3 \): 17.03 g/mol
2. Calculate the Moles of \( NH_3 \) Produced:
- Desired mass of \( NH_3 \): 1.7 grams
- Moles of \( NH_3 \) can be calculated using its molar mass:
[tex]\[ \text{Moles of } NH_3 = \frac{\text{mass of } NH_3}{\text{molar mass of } NH_3} = \frac{1.7 \text{ grams}}{17.03 \text{ g/mol}} \][/tex]
This calculation gives approximately 0.09982 moles of \( NH_3 \).
3. Use the Stoichiometry of the Balanced Reaction:
- According to the balanced chemical equation:
[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]
- This reaction tells us that 1 mole of \( N_2 \) produces 2 moles of \( NH_3 \).
4. Calculate the Moles of \( N_2 \) Needed:
- From the stoichiometry of the reaction:
[tex]\[ \text{Moles of } N_2 = \frac{\text{Moles of } NH_3}{2} = \frac{0.09982 \text{ moles}}{2} \][/tex]
This calculation gives approximately 0.04991 moles of \( N_2 \).
5. Convert Moles of \( N_2 \) to Grams:
- Using the molar mass of \( N_2 \):
[tex]\[ \text{Mass of } N_2 = \text{moles of } N_2 \times \text{molar mass of } N_2 = 0.04991 \text{ moles} \times 28.02 \text{ g/mol} \][/tex]
This calculation gives approximately 1.3985 grams of \( N_2 \).
Therefore, to form 1.7 grams of ammonia ([tex]\( NH_3 \)[/tex]), you need approximately 1.4 grams of nitrogen gas ([tex]\( N_2 \)[/tex]). Thus, the closest correct choice is [tex]\(\boxed{1.4 \text{ g}}\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.