Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the equation of the line passing through point \( C \) and perpendicular to line segment \( \overline{AB} \), we start by determining the properties of line \( \overline{AB} \).
Given points \( A(2, 9) \) and \( B(8, 4) \):
1. Calculate the slope of \( \overline{AB} \):
[tex]\[ \text{slope of } \overline{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} = -\frac{5}{6} \][/tex]
2. The slope of the line perpendicular to \( \overline{AB} \) is the negative reciprocal of the slope of \( \overline{AB} \):
[tex]\[ \text{slope of the perpendicular line} = -\left(-\frac{5}{6}\right)^{-1} = \frac{6}{5} = 1.2 \][/tex]
3. The equation of a line in slope-intercept form is \( y = mx + b \). We need to find the y-intercept \( b \) of the line that passes through point \( C \) with coordinates \( (-3, -2) \) and slope \( 1.2 \):
[tex]\[ y = 1.2x + b \][/tex]
Substitute \( C(-3, -2) \) into the equation to solve for \( b \):
[tex]\[ -2 = 1.2(-3) + b \][/tex]
[tex]\[ -2 = -3.6 + b \][/tex]
[tex]\[ b = 1.6 \][/tex]
Therefore, the equation of the line passing through point \( C(-3, -2) \) and perpendicular to \( \overline{AB} \) is:
[tex]\[ y = 1.2x + 1.6 \][/tex]
So, completing the equation \( y = \square x + \square \):
[tex]\[ y = 1.2 \;x + 1.6 \][/tex]
Given points \( A(2, 9) \) and \( B(8, 4) \):
1. Calculate the slope of \( \overline{AB} \):
[tex]\[ \text{slope of } \overline{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} = -\frac{5}{6} \][/tex]
2. The slope of the line perpendicular to \( \overline{AB} \) is the negative reciprocal of the slope of \( \overline{AB} \):
[tex]\[ \text{slope of the perpendicular line} = -\left(-\frac{5}{6}\right)^{-1} = \frac{6}{5} = 1.2 \][/tex]
3. The equation of a line in slope-intercept form is \( y = mx + b \). We need to find the y-intercept \( b \) of the line that passes through point \( C \) with coordinates \( (-3, -2) \) and slope \( 1.2 \):
[tex]\[ y = 1.2x + b \][/tex]
Substitute \( C(-3, -2) \) into the equation to solve for \( b \):
[tex]\[ -2 = 1.2(-3) + b \][/tex]
[tex]\[ -2 = -3.6 + b \][/tex]
[tex]\[ b = 1.6 \][/tex]
Therefore, the equation of the line passing through point \( C(-3, -2) \) and perpendicular to \( \overline{AB} \) is:
[tex]\[ y = 1.2x + 1.6 \][/tex]
So, completing the equation \( y = \square x + \square \):
[tex]\[ y = 1.2 \;x + 1.6 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.