Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Choose the expression that is equivalent to [tex]\left(6^{-2} \cdot 6^5\right)^{-3}[/tex].

A. [tex]-6^9[/tex]

B. [tex]-\frac{1}{6^9}[/tex]

C. [tex]\frac{1}{6^9}[/tex]

D. [tex]6^{25}[/tex]

Sagot :

To solve the given expression \(\left(6^{-2} \cdot 6^5\right)^{-3}\), we can follow these steps:

1. Combine the Bases with Exponents:
- We start with the expression inside the parentheses: \(6^{-2} \cdot 6^5\).

Using the property of exponents that states \(a^m \cdot a^n = a^{m+n}\):
[tex]\[ 6^{-2} \cdot 6^5 = 6^{-2 + 5} = 6^3 \][/tex]

2. Raise the Result to the Power of \(-3\):
- Now we need to raise \(6^3\) to the power of \(-3\):
[tex]\[ (6^3)^{-3} \][/tex]

Using the property of exponents that states \((a^m)^n = a^{m \cdot n}\):
[tex]\[ (6^3)^{-3} = 6^{3 \cdot (-3)} = 6^{-9} \][/tex]

3. Simplify the Expression:
- An exponent with a negative power can be written as a fraction:
[tex]\[ 6^{-9} = \frac{1}{6^9} \][/tex]

Thus, the expression \(\left(6^{-2} \cdot 6^5\right)^{-3}\) simplifies to \(\frac{1}{6^9}\).

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{6^9}} \][/tex]