Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the correct equation of the trend line passing through the points \((1, 130)\) and \((10, 149)\), we need to follow a sequence of logical steps.
1. Calculate the slope \(m\) of the trend line:
- The formula to calculate the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Substituting \((x_1, y_1) = (1, 130)\) and \((x_2, y_2) = (10, 149)\):
[tex]\[ m = \frac{149 - 130}{10 - 1} = \frac{19}{9} \][/tex]
2. Form the equation of the trend line:
- The general form of the equation of the trend line is:
[tex]\[ y = mx + b \][/tex]
- We need to find the value of the y-intercept \(b\). To do this, substitute the slope \(m\) and one of the points into the equation.
3. Choose a point to solve for \(b\):
- Using the point \((10, 149)\) to solve for \(b\), substitute \(x = 10\), \(y = 149\), and \(m = \frac{19}{9}\) into the equation \(y = mx + b\):
[tex]\[ 149 = \left(\frac{19}{9}\right) \cdot 10 + b \][/tex]
- Rearranging to solve for \(b\):
[tex]\[ b = 149 - \left(\frac{19}{9}\right) \cdot 10 \][/tex]
Hence, Loren should solve \(149 = \frac{19}{9}(10) + b\) for \(b\).
Therefore, the correct error that Loren made is:
- She should have solved [tex]\(149 = \frac{19}{9}(10) + b\)[/tex] for [tex]\(b\)[/tex].
1. Calculate the slope \(m\) of the trend line:
- The formula to calculate the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Substituting \((x_1, y_1) = (1, 130)\) and \((x_2, y_2) = (10, 149)\):
[tex]\[ m = \frac{149 - 130}{10 - 1} = \frac{19}{9} \][/tex]
2. Form the equation of the trend line:
- The general form of the equation of the trend line is:
[tex]\[ y = mx + b \][/tex]
- We need to find the value of the y-intercept \(b\). To do this, substitute the slope \(m\) and one of the points into the equation.
3. Choose a point to solve for \(b\):
- Using the point \((10, 149)\) to solve for \(b\), substitute \(x = 10\), \(y = 149\), and \(m = \frac{19}{9}\) into the equation \(y = mx + b\):
[tex]\[ 149 = \left(\frac{19}{9}\right) \cdot 10 + b \][/tex]
- Rearranging to solve for \(b\):
[tex]\[ b = 149 - \left(\frac{19}{9}\right) \cdot 10 \][/tex]
Hence, Loren should solve \(149 = \frac{19}{9}(10) + b\) for \(b\).
Therefore, the correct error that Loren made is:
- She should have solved [tex]\(149 = \frac{19}{9}(10) + b\)[/tex] for [tex]\(b\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.