Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the equation of a line in the slope-intercept form \( y = mx + b \) that passes through the points \((2, 18)\) and \((-3, 8)\), we need to follow these steps:
1. Calculate the slope \(m\):
The slope \(m\) of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points \((2, 18)\) and \((-3, 8)\):
[tex]\[ m = \frac{8 - 18}{-3 - 2} = \frac{-10}{-5} = 2 \][/tex]
2. Use one of the points to find the y-intercept \(b\):
We can use the point \((x_1, y_1)\) and the slope to find the y-intercept \(b\) using the equation:
[tex]\[ y = mx + b \][/tex]
Rearrange this to solve for \(b\):
[tex]\[ b = y - mx \][/tex]
Use the point \((2, 18)\) and the slope \(m = 2\):
[tex]\[ b = 18 - 2 \cdot 2 = 18 - 4 = 14 \][/tex]
Therefore, the value Darren should use as [tex]\(b\)[/tex] in his equation is [tex]\( \boxed{14} \)[/tex].
1. Calculate the slope \(m\):
The slope \(m\) of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points \((2, 18)\) and \((-3, 8)\):
[tex]\[ m = \frac{8 - 18}{-3 - 2} = \frac{-10}{-5} = 2 \][/tex]
2. Use one of the points to find the y-intercept \(b\):
We can use the point \((x_1, y_1)\) and the slope to find the y-intercept \(b\) using the equation:
[tex]\[ y = mx + b \][/tex]
Rearrange this to solve for \(b\):
[tex]\[ b = y - mx \][/tex]
Use the point \((2, 18)\) and the slope \(m = 2\):
[tex]\[ b = 18 - 2 \cdot 2 = 18 - 4 = 14 \][/tex]
Therefore, the value Darren should use as [tex]\(b\)[/tex] in his equation is [tex]\( \boxed{14} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.