Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Arc CD is [tex]\frac{1}{4}[/tex] of the circumference of a circle. What is the radian measure of the central angle?

A. [tex]\frac{\pi}{4}[/tex] radians
B. [tex]\frac{\pi}{2}[/tex] radians
C. [tex]2 \pi[/tex] radians
D. [tex]4 \pi[/tex] radians


Sagot :

To determine the radian measure of a central angle corresponding to the arc \(\overline{CD}\), given that the arc is \(\frac{1}{4}\) of the circumference of a circle, follow these steps:

1. Understand the relationship between arc length and central angle:
The radian measure of a central angle is directly proportional to the length of the arc it subtends. Specifically, if the arc length is a fraction of the entire circumference, the central angle will be the same fraction of \(2\pi\) radians (which represents the angle for the full circle).

2. Given information:
Arc \(\overline{CD}\) is \(\frac{1}{4}\) of the circumference of the circle.

3. Determine the fraction of the full circle:
Since the arc \(\overline{CD}\) is \(\frac{1}{4}\) of the circumference, the central angle that subtends this arc is \(\frac{1}{4}\) of the full circle's angle.

4. Full circle in radians:
The angle for a full circle is \(2\pi\) radians.

5. Calculate the central angle in radians:
Since the arc is \(\frac{1}{4}\) of the circumference, the central angle is:
[tex]\[ \frac{1}{4} \times 2\pi = \frac{2\pi}{4} = \frac{\pi}{2} \text{ radians} \][/tex]

Therefore, the radian measure of the central angle for arc \(\overline{CD}\) is \(\frac{\pi}{2}\) radians.

The correct answer is [tex]\[ \boxed{\frac{\pi}{2} \text{ radians}} \][/tex]