Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the sum of the given polynomials and group like terms together, we'll follow these steps:
1. Write down the given polynomials:
[tex]\[ 10 x^2 y + 2 x y^2 - 4 x^2 - 4 x^2 y \][/tex]
2. Combine like terms:
- First, notice that \(10 x^2 y \) and \(-4 x^2 y \) are like terms because they both contain \( x^2 y \).
- Next, \(2 x y^2\) has no other like term.
- Finally, \(-4 x^2 \) has no other like term.
3. Combine the like terms:
- Combine \(10 x^2 y\) and \(-4 x^2 y\):
[tex]\[ 10 x^2 y - 4 x^2 y = 6 x^2 y \][/tex]
- The other terms \(2 x y^2\) and \(-4 x^2\) remain unchanged.
Therefore, the grouped polynomial is:
[tex]\[ 6 x^2 y + 2 x y^2 - 4 x^2 \][/tex]
Now, let's match this simplified polynomial with the provided choices:
1. [tex]\[ \left[\left(-4 x^2\right)+\left(-4 x^2 y\right)+10 x^2 y\right]+2 x y^2 \][/tex]
2. [tex]\[ 10 x^2 y + 2 x y^2 + \left[\left(-4 x^2\right)+\left(-4 x^2 y\right)\right] \][/tex]
3. [tex]\[ \left(-4 x^2\right)+2 x y^2+\left[10 x^2 y+\left(-4 x^2 y\right)\right] \][/tex]
4. [tex]\[ \left[10 x^2 y+2 x y^2+\left(-4 x^2 y\right)\right]+\left(-4 x^2\right] \][/tex]
5. [tex]\[ \left[10 x^2 y + 2 x y^2 + \left(-4 x^2 y\right)\right] + \left(-4 x^2\right) \][/tex]
From the choices, the correct expression that matches our simplified polynomial:
[tex]\[ 6 x^2 y + 2 x y^2 - 4 x^2 \][/tex]
is option 5.
Thus, the answer is:
[tex]\[ \left[10 x^2 y + 2 x y^2 + \left(-4 x^2 y \right) \right ] + \left(-4 x^2 \right) \][/tex]
This indicates the sum of the polynomials with like terms grouped together.
1. Write down the given polynomials:
[tex]\[ 10 x^2 y + 2 x y^2 - 4 x^2 - 4 x^2 y \][/tex]
2. Combine like terms:
- First, notice that \(10 x^2 y \) and \(-4 x^2 y \) are like terms because they both contain \( x^2 y \).
- Next, \(2 x y^2\) has no other like term.
- Finally, \(-4 x^2 \) has no other like term.
3. Combine the like terms:
- Combine \(10 x^2 y\) and \(-4 x^2 y\):
[tex]\[ 10 x^2 y - 4 x^2 y = 6 x^2 y \][/tex]
- The other terms \(2 x y^2\) and \(-4 x^2\) remain unchanged.
Therefore, the grouped polynomial is:
[tex]\[ 6 x^2 y + 2 x y^2 - 4 x^2 \][/tex]
Now, let's match this simplified polynomial with the provided choices:
1. [tex]\[ \left[\left(-4 x^2\right)+\left(-4 x^2 y\right)+10 x^2 y\right]+2 x y^2 \][/tex]
2. [tex]\[ 10 x^2 y + 2 x y^2 + \left[\left(-4 x^2\right)+\left(-4 x^2 y\right)\right] \][/tex]
3. [tex]\[ \left(-4 x^2\right)+2 x y^2+\left[10 x^2 y+\left(-4 x^2 y\right)\right] \][/tex]
4. [tex]\[ \left[10 x^2 y+2 x y^2+\left(-4 x^2 y\right)\right]+\left(-4 x^2\right] \][/tex]
5. [tex]\[ \left[10 x^2 y + 2 x y^2 + \left(-4 x^2 y\right)\right] + \left(-4 x^2\right) \][/tex]
From the choices, the correct expression that matches our simplified polynomial:
[tex]\[ 6 x^2 y + 2 x y^2 - 4 x^2 \][/tex]
is option 5.
Thus, the answer is:
[tex]\[ \left[10 x^2 y + 2 x y^2 + \left(-4 x^2 y \right) \right ] + \left(-4 x^2 \right) \][/tex]
This indicates the sum of the polynomials with like terms grouped together.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.