Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which polynomial is in standard form, we need to check whether the terms of the polynomial are arranged in descending order of their power of \(x\).
Given the polynomials:
1. \(12 x - 14 x^4 + 11 x^5\)
2. \(-6 x - 3 x^2 + 2\)
3. \(11 x^3 - 6 x^2 + 5 x\)
4. \(14 x^9 + 15 x^{12} + 17\)
Let's analyze each polynomial one by one:
1. \(12 x - 14 x^4 + 11 x^5\)
- Terms: \(12 x\), \(-14 x^4\), \(11 x^5\)
- Powers of \(x\): \(1, 4, 5\)
- The powers \(1, 4, 5\) are not in descending order. Hence, this polynomial is not in standard form.
2. \(-6 x - 3 x^2 + 2\)
- Terms: \(-6 x\), \(-3 x^2\), \(2\)
- Powers of \(x\): \(1, 2, 0\)
- The powers \(2, 1, 0\) are in descending order. Hence, this polynomial is in standard form.
3. \(11 x^3 - 6 x^2 + 5 x\)
- Terms: \(11 x^3\), \(-6 x^2\), \(5 x\)
- Powers of \(x\): \(3, 2, 1\)
- The powers \(3, 2, 1\) are in descending order. Hence, this polynomial is in standard form.
4. \(14 x^9 + 15 x^{12} + 17\)
- Terms: \(14 x^9\), \(15 x^{12}\), \(17\)
- Powers of \(x\): \(9, 12, 0\)
- The powers \(12, 9, 0\) are not in descending order. Hence, this polynomial is not in standard form.
After checking each polynomial, we find that polynomial [tex]\( \boxed{2} \)[/tex] is in standard form as its terms are arranged in descending order of the power of [tex]\(x\)[/tex].
Given the polynomials:
1. \(12 x - 14 x^4 + 11 x^5\)
2. \(-6 x - 3 x^2 + 2\)
3. \(11 x^3 - 6 x^2 + 5 x\)
4. \(14 x^9 + 15 x^{12} + 17\)
Let's analyze each polynomial one by one:
1. \(12 x - 14 x^4 + 11 x^5\)
- Terms: \(12 x\), \(-14 x^4\), \(11 x^5\)
- Powers of \(x\): \(1, 4, 5\)
- The powers \(1, 4, 5\) are not in descending order. Hence, this polynomial is not in standard form.
2. \(-6 x - 3 x^2 + 2\)
- Terms: \(-6 x\), \(-3 x^2\), \(2\)
- Powers of \(x\): \(1, 2, 0\)
- The powers \(2, 1, 0\) are in descending order. Hence, this polynomial is in standard form.
3. \(11 x^3 - 6 x^2 + 5 x\)
- Terms: \(11 x^3\), \(-6 x^2\), \(5 x\)
- Powers of \(x\): \(3, 2, 1\)
- The powers \(3, 2, 1\) are in descending order. Hence, this polynomial is in standard form.
4. \(14 x^9 + 15 x^{12} + 17\)
- Terms: \(14 x^9\), \(15 x^{12}\), \(17\)
- Powers of \(x\): \(9, 12, 0\)
- The powers \(12, 9, 0\) are not in descending order. Hence, this polynomial is not in standard form.
After checking each polynomial, we find that polynomial [tex]\( \boxed{2} \)[/tex] is in standard form as its terms are arranged in descending order of the power of [tex]\(x\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.