Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which polynomial is in standard form, we need to check whether the terms of the polynomial are arranged in descending order of their power of \(x\).
Given the polynomials:
1. \(12 x - 14 x^4 + 11 x^5\)
2. \(-6 x - 3 x^2 + 2\)
3. \(11 x^3 - 6 x^2 + 5 x\)
4. \(14 x^9 + 15 x^{12} + 17\)
Let's analyze each polynomial one by one:
1. \(12 x - 14 x^4 + 11 x^5\)
- Terms: \(12 x\), \(-14 x^4\), \(11 x^5\)
- Powers of \(x\): \(1, 4, 5\)
- The powers \(1, 4, 5\) are not in descending order. Hence, this polynomial is not in standard form.
2. \(-6 x - 3 x^2 + 2\)
- Terms: \(-6 x\), \(-3 x^2\), \(2\)
- Powers of \(x\): \(1, 2, 0\)
- The powers \(2, 1, 0\) are in descending order. Hence, this polynomial is in standard form.
3. \(11 x^3 - 6 x^2 + 5 x\)
- Terms: \(11 x^3\), \(-6 x^2\), \(5 x\)
- Powers of \(x\): \(3, 2, 1\)
- The powers \(3, 2, 1\) are in descending order. Hence, this polynomial is in standard form.
4. \(14 x^9 + 15 x^{12} + 17\)
- Terms: \(14 x^9\), \(15 x^{12}\), \(17\)
- Powers of \(x\): \(9, 12, 0\)
- The powers \(12, 9, 0\) are not in descending order. Hence, this polynomial is not in standard form.
After checking each polynomial, we find that polynomial [tex]\( \boxed{2} \)[/tex] is in standard form as its terms are arranged in descending order of the power of [tex]\(x\)[/tex].
Given the polynomials:
1. \(12 x - 14 x^4 + 11 x^5\)
2. \(-6 x - 3 x^2 + 2\)
3. \(11 x^3 - 6 x^2 + 5 x\)
4. \(14 x^9 + 15 x^{12} + 17\)
Let's analyze each polynomial one by one:
1. \(12 x - 14 x^4 + 11 x^5\)
- Terms: \(12 x\), \(-14 x^4\), \(11 x^5\)
- Powers of \(x\): \(1, 4, 5\)
- The powers \(1, 4, 5\) are not in descending order. Hence, this polynomial is not in standard form.
2. \(-6 x - 3 x^2 + 2\)
- Terms: \(-6 x\), \(-3 x^2\), \(2\)
- Powers of \(x\): \(1, 2, 0\)
- The powers \(2, 1, 0\) are in descending order. Hence, this polynomial is in standard form.
3. \(11 x^3 - 6 x^2 + 5 x\)
- Terms: \(11 x^3\), \(-6 x^2\), \(5 x\)
- Powers of \(x\): \(3, 2, 1\)
- The powers \(3, 2, 1\) are in descending order. Hence, this polynomial is in standard form.
4. \(14 x^9 + 15 x^{12} + 17\)
- Terms: \(14 x^9\), \(15 x^{12}\), \(17\)
- Powers of \(x\): \(9, 12, 0\)
- The powers \(12, 9, 0\) are not in descending order. Hence, this polynomial is not in standard form.
After checking each polynomial, we find that polynomial [tex]\( \boxed{2} \)[/tex] is in standard form as its terms are arranged in descending order of the power of [tex]\(x\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.