At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the following system of linear equations step-by-step:
[tex]\[ \begin{cases} 4p + q = 19 \\ -5p + 4q = -29 \end{cases} \][/tex]
Step 1: Write both equations in standard form:
[tex]\[ 4p + q = 19 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -5p + 4q = -29 \quad \text{(Equation 2)} \][/tex]
Step 2: Eliminate one variable by making the coefficients of that variable equal in magnitude. Let's eliminate \( q \). To do this, we'll multiply Equation 1 by 4:
[tex]\[ 4(4p + q) = 4 \times 19 \][/tex]
[tex]\[ 16p + 4q = 76 \quad \text{(Equation 3)} \][/tex]
Step 3: Subtract Equation 2 from Equation 3:
[tex]\[ (16p + 4q) - (-5p + 4q) = 76 - (-29) \][/tex]
[tex]\[ 16p + 4q + 5p - 4q = 76 + 29 \][/tex]
[tex]\[ 21p = 105 \][/tex]
Step 4: Solve for \( p \):
[tex]\[ p = \frac{105}{21} \][/tex]
[tex]\[ p = 5 \][/tex]
Step 5: Substitute \( p = 5 \) back into Equation 1 to find \( q \):
[tex]\[ 4(5) + q = 19 \][/tex]
[tex]\[ 20 + q = 19 \][/tex]
[tex]\[ q = 19 - 20 \][/tex]
[tex]\[ q = -1 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ p = 5, \quad q = -1 \][/tex]
[tex]\[ \begin{cases} 4p + q = 19 \\ -5p + 4q = -29 \end{cases} \][/tex]
Step 1: Write both equations in standard form:
[tex]\[ 4p + q = 19 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -5p + 4q = -29 \quad \text{(Equation 2)} \][/tex]
Step 2: Eliminate one variable by making the coefficients of that variable equal in magnitude. Let's eliminate \( q \). To do this, we'll multiply Equation 1 by 4:
[tex]\[ 4(4p + q) = 4 \times 19 \][/tex]
[tex]\[ 16p + 4q = 76 \quad \text{(Equation 3)} \][/tex]
Step 3: Subtract Equation 2 from Equation 3:
[tex]\[ (16p + 4q) - (-5p + 4q) = 76 - (-29) \][/tex]
[tex]\[ 16p + 4q + 5p - 4q = 76 + 29 \][/tex]
[tex]\[ 21p = 105 \][/tex]
Step 4: Solve for \( p \):
[tex]\[ p = \frac{105}{21} \][/tex]
[tex]\[ p = 5 \][/tex]
Step 5: Substitute \( p = 5 \) back into Equation 1 to find \( q \):
[tex]\[ 4(5) + q = 19 \][/tex]
[tex]\[ 20 + q = 19 \][/tex]
[tex]\[ q = 19 - 20 \][/tex]
[tex]\[ q = -1 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ p = 5, \quad q = -1 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.