Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's work through the problem to determine which expression is a monomial.
A monomial is an algebraic expression consisting of only one term. This term consists of a product of constants and variables raised to non-negative integer powers. Here's the step-by-step analysis for each given option:
1. \(\frac{1}{x}\):
- This expression can be rewritten as \(x^{-1}\), where the variable \(x\) is raised to the power of \(-1\).
- Since \(-1\) is not a non-negative integer, \(\frac{1}{x}\) is not a monomial.
2. \(3 x^{0.5}\):
- In this expression, \(x\) is raised to the power of \(0.5\).
- The power \(0.5\) is not an integer, so \(3 x^{0.5}\) is not a monomial.
3. \(x + 1\):
- This expression consists of two terms: \(x\) and \(1\).
- Since a monomial can only have one term, \(x + 1\) is not a monomial. It is actually a binomial.
4. \(7\):
- This is a constant term, where no variable is present.
- A constant is considered a monomial since it can be thought of as \(7x^0\), where the variable \(x\) is raised to the power of \(0\) (and \(0\) is a non-negative integer).
Therefore, the expression that is a monomial is:
[tex]\[ \boxed{7} \][/tex]
A monomial is an algebraic expression consisting of only one term. This term consists of a product of constants and variables raised to non-negative integer powers. Here's the step-by-step analysis for each given option:
1. \(\frac{1}{x}\):
- This expression can be rewritten as \(x^{-1}\), where the variable \(x\) is raised to the power of \(-1\).
- Since \(-1\) is not a non-negative integer, \(\frac{1}{x}\) is not a monomial.
2. \(3 x^{0.5}\):
- In this expression, \(x\) is raised to the power of \(0.5\).
- The power \(0.5\) is not an integer, so \(3 x^{0.5}\) is not a monomial.
3. \(x + 1\):
- This expression consists of two terms: \(x\) and \(1\).
- Since a monomial can only have one term, \(x + 1\) is not a monomial. It is actually a binomial.
4. \(7\):
- This is a constant term, where no variable is present.
- A constant is considered a monomial since it can be thought of as \(7x^0\), where the variable \(x\) is raised to the power of \(0\) (and \(0\) is a non-negative integer).
Therefore, the expression that is a monomial is:
[tex]\[ \boxed{7} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.