Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which polynomial is in standard form, let's break down the process and analyze each polynomial step by step. A polynomial in standard form is one where the terms are arranged in descending order of their total degrees.
The total degree of a term is the sum of the exponents of all the variables in that term.
### Analyzing Polynomial 1:
[tex]\[ P_1 = 3xy + 6x^3 y^2 - 4x^4 y^3 + 19x^7 y^4 \][/tex]
- \(3xy\): Total degree = \(1 + 1 = 2\)
- \(6x^3 y^2\): Total degree = \(3 + 2 = 5\)
- \(4x^4 y^3\): Total degree = \(4 + 3 = 7\)
- \(19x^7 y^4\): Total degree = \(7 + 4 = 11\)
Degrees of terms: \([2, 5, 7, 11]\)
### Analyzing Polynomial 2:
[tex]\[ P_2 = 18x^5 - 7x^2 y - 2xy^2 + 17y^4 \][/tex]
- \(18x^5\): Total degree = \(5\)
- \(-7x^2 y\): Total degree = \(2 + 1 = 3\)
- \(-2xy^2\): Total degree = \(1 + 2 = 3\)
- \(17y^4\): Total degree = \(4\)
Degrees of terms: \([5, 3, 3, 4]\)
### Analyzing Polynomial 3:
[tex]\[ P_3 = x^5 y^5 - 3xy - 11x^2 y^2 + 12 \][/tex]
- \(x^5 y^5\): Total degree = \(5 + 5 = 10\)
- \(-3xy\): Total degree = \(1 + 1 = 2\)
- \(-11x^2 y^2\): Total degree = \(2 + 2 = 4\)
- \(12\): Total degree = \(0\)
Degrees of terms: \([10, 2, 4, 0]\)
### Analyzing Polynomial 4:
[tex]\[ P_4 = 15 + 12xy^2 - 11x^9 y^5 + 5x^7 y^2 \][/tex]
- \(15\): Total degree = \(0\)
- \(12xy^2\): Total degree = \(1 + 2 = 3\)
- \(-11x^9 y^5\): Total degree = \(9 + 5 = 14\)
- \(5x^7 y^2\): Total degree = \(7 + 2 = 9\)
Degrees of terms: \([0, 3, 14, 9]\)
### Conclusion:
By checking if the degrees are in descending order for each polynomial:
- For \( P_1 \): The degrees \([2, 5, 7, 11]\) are in ascending order, not descending.
- For \( P_2 \): The degrees \([5, 3, 3, 4]\) are not in descending order.
- For \( P_3 \): The degrees \([10, 2, 4, 0]\) are not in descending order.
- For \( P_4 \): The degrees \([0, 3, 14, 9]\) are not in descending order.
None of the given polynomials are in standard form. Therefore, the correct answer is that no polynomial is in standard form.
Thus, the result is:
[tex]\[ \boxed{\text{None}} \][/tex]
The total degree of a term is the sum of the exponents of all the variables in that term.
### Analyzing Polynomial 1:
[tex]\[ P_1 = 3xy + 6x^3 y^2 - 4x^4 y^3 + 19x^7 y^4 \][/tex]
- \(3xy\): Total degree = \(1 + 1 = 2\)
- \(6x^3 y^2\): Total degree = \(3 + 2 = 5\)
- \(4x^4 y^3\): Total degree = \(4 + 3 = 7\)
- \(19x^7 y^4\): Total degree = \(7 + 4 = 11\)
Degrees of terms: \([2, 5, 7, 11]\)
### Analyzing Polynomial 2:
[tex]\[ P_2 = 18x^5 - 7x^2 y - 2xy^2 + 17y^4 \][/tex]
- \(18x^5\): Total degree = \(5\)
- \(-7x^2 y\): Total degree = \(2 + 1 = 3\)
- \(-2xy^2\): Total degree = \(1 + 2 = 3\)
- \(17y^4\): Total degree = \(4\)
Degrees of terms: \([5, 3, 3, 4]\)
### Analyzing Polynomial 3:
[tex]\[ P_3 = x^5 y^5 - 3xy - 11x^2 y^2 + 12 \][/tex]
- \(x^5 y^5\): Total degree = \(5 + 5 = 10\)
- \(-3xy\): Total degree = \(1 + 1 = 2\)
- \(-11x^2 y^2\): Total degree = \(2 + 2 = 4\)
- \(12\): Total degree = \(0\)
Degrees of terms: \([10, 2, 4, 0]\)
### Analyzing Polynomial 4:
[tex]\[ P_4 = 15 + 12xy^2 - 11x^9 y^5 + 5x^7 y^2 \][/tex]
- \(15\): Total degree = \(0\)
- \(12xy^2\): Total degree = \(1 + 2 = 3\)
- \(-11x^9 y^5\): Total degree = \(9 + 5 = 14\)
- \(5x^7 y^2\): Total degree = \(7 + 2 = 9\)
Degrees of terms: \([0, 3, 14, 9]\)
### Conclusion:
By checking if the degrees are in descending order for each polynomial:
- For \( P_1 \): The degrees \([2, 5, 7, 11]\) are in ascending order, not descending.
- For \( P_2 \): The degrees \([5, 3, 3, 4]\) are not in descending order.
- For \( P_3 \): The degrees \([10, 2, 4, 0]\) are not in descending order.
- For \( P_4 \): The degrees \([0, 3, 14, 9]\) are not in descending order.
None of the given polynomials are in standard form. Therefore, the correct answer is that no polynomial is in standard form.
Thus, the result is:
[tex]\[ \boxed{\text{None}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.