Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Select the two binomials that are factors of this trinomial.

[tex]\[ x^2 + 6x + 8 \][/tex]

A. \( x + 8 \)

B. \( x + 4 \)

C. \( x - 4 \)

D. [tex]\( x + 2 \)[/tex]


Sagot :

To factor the trinomial \( x^2 + 6x + 8 \), we need to find two binomials that multiply together to give us the original trinomial.

1. We start by identifying the trinomial in the standard form \( ax^2 + bx + c \), where in this case, \( a = 1 \), \( b = 6 \), and \( c = 8 \).

2. We need to find two numbers that multiply to \( c \) (which is 8) and add up to \( b \) (which is 6).

3. Looking at the possible pairs of factors of 8, we have:
- \( 1 \times 8 = 8 \) and \( 1 + 8 = 9 \)
- \( 2 \times 4 = 8 \) and \( 2 + 4 = 6 \)

4. The pair that fits our requirement is \( 2 \) and \( 4 \), since they multiply to 8 and add to 6.

5. With these factors, we can express the trinomial as a product of two binomials:
[tex]\[ x^2 + 6x + 8 = (x + 2)(x + 4) \][/tex]

Therefore, the correct binomials that are factors of \( x^2 + 6x + 8 \) are:

[tex]\[ \boxed{x+2 \text{ and } x+4} \][/tex]

So, the choices from the given options are:
B. \( x+4 \)
D. \( x+2 \)

These are the two binomials that factor the given trinomial correctly.