Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Solve for \(x\) in the equation \(2x^2 - 5x + 1 = 3\).

A. \(x = \frac{5}{2} \pm \frac{\sqrt{29}}{2}\)

B. \(x = \frac{5}{2} \pm \frac{\sqrt{41}}{4}\)

C. \(x = \frac{5}{4} \pm \frac{\sqrt{29}}{2}\)

D. [tex]\(x = \frac{5}{4} \pm \frac{\sqrt{41}}{4}\)[/tex]

Sagot :

To solve the quadratic equation \( 2x^2 - 5x + 1 = 3 \), follow these steps:

1. Rewrite the equation in standard form:
[tex]\[ 2x^2 - 5x + 1 = 3 \implies 2x^2 - 5x + 1 - 3 = 0 \implies 2x^2 - 5x - 2 = 0 \][/tex]

2. Identify the coefficients \( a \), \( b \), and \( c \):
The quadratic equation is now in the standard form \( ax^2 + bx + c = 0 \) with:
[tex]\[ a = 2, \quad b = -5, \quad c = -2 \][/tex]

3. Calculate the discriminant \( \Delta \):
[tex]\[ \Delta = b^2 - 4ac = (-5)^2 - 4 \cdot 2 \cdot (-2) = 25 + 16 = 41 \][/tex]

4. Apply the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]

Substitute \( a \), \( b \), and \( \Delta \):
[tex]\[ x = \frac{-(-5) \pm \sqrt{41}}{2 \cdot 2} = \frac{5 \pm \sqrt{41}}{4} \][/tex]

5. Write the solutions:
[tex]\[ x = \frac{5}{4} \pm \frac{\sqrt{41}}{4} \][/tex]

So the correct answer is:
[tex]\[ x = \frac{5}{4} \pm \frac{\sqrt{41}}{4} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.