poopey
Answered

Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Which polynomial is in standard form?

A. [tex]1 + 2x - 8x^2 + 6x^3[/tex]

B. [tex]2x^2 + 6x^3 - 9x + 12[/tex]

C. [tex]6x^3 + 5x - 3x^2 + 2[/tex]

D. [tex]2x^3 + 4x^2 - 7x + 5[/tex]


Sagot :

To determine which polynomial is in standard form, we must ensure that the terms in the polynomial are arranged in descending order of their degrees.

Let's examine each polynomial one by one:

1. Polynomial 1: \(1 + 2x - 8x^2 + 6x^3\)
- Degree of the terms: \(6x^3\) (degree 3), \(-8x^2\) (degree 2), \(2x\) (degree 1), \(1\) (degree 0).
- The terms are not arranged in descending order, as the term \(6x^3\) should come first.
- Therefore, this polynomial is not in standard form.

2. Polynomial 2: \(2x^2 + 6x^3 - 9x + 12\)
- Degree of the terms: \(6x^3\) (degree 3), \(2x^2\) (degree 2), \(-9x\) (degree 1), \(12\) (degree 0).
- The terms are not arranged in descending order, as the term \(6x^3\) should come first.
- Therefore, this polynomial is not in standard form.

3. Polynomial 3: \(6x^3 + 5x - 3x^2 + 2\)
- Degree of the terms: \(6x^3\) (degree 3), \(-3x^2\) (degree 2), \(5x\) (degree 1), \(2\) (degree 0).
- The terms are arranged in descending order: \(6x^3\), \(-3x^2\), \(5x\), \(2\).
- Therefore, this polynomial is in standard form.

4. Polynomial 4: \(2x^3 + 4x^2 - 7x + 5\)
- Degree of the terms: \(2x^3\) (degree 3), \(4x^2\) (degree 2), \(-7x\) (degree 1), \(5\) (degree 0).
- The terms are arranged in descending order: \(2x^3\), \(4x^2\), \(-7x\), \(5\).
- Therefore, this polynomial is in standard form.

Thus, the polynomials in standard form are:
- Polynomial 3: \(6x^3 + 5x - 3x^2 + 2\)
- Polynomial 4: \(2x^3 + 4x^2 - 7x + 5\)

By listing their positions, the respective results are:
- \(1\) (not in standard form)
- \(2\) (not in standard form)
- \(3\) (in standard form)
- \(4\) (in standard form)

So the answer is:
[tex]\[ (0, 0, 3, 4) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.