Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

A point has the coordinates \((0, k)\).

Which reflection of the point will produce an image at the same coordinates, \((0, k)\)?

A. a reflection of the point across the \(x\)-axis
B. a reflection of the point across the \(y\)-axis
C. a reflection of the point across the line \(y=x\)
D. a reflection of the point across the line [tex]\(y=-x\)[/tex]

Sagot :

To determine which reflection of a point with coordinates \((0, k)\) will produce an image at the same coordinates \((0, k)\), let's analyze each given reflection option:

1. Reflection across the [tex]$x$[/tex]-axis:
- When a point \((x,y)\) is reflected across the [tex]$x$[/tex]-axis, its new coordinates become \((x, -y)\).
- For the point \((0, k)\), reflecting it across the [tex]$x$[/tex]-axis results in \((0, -k)\).
- This is not the same as \((0,k)\).

2. Reflection across the [tex]$y$[/tex]-axis:
- When a point \((x,y)\) is reflected across the [tex]$y$[/tex]-axis, its new coordinates become \((-x, y)\).
- For the point \((0, k)\), reflecting it across the [tex]$y$[/tex]-axis results in \((0, k)\).
- This is the same as \((0,k)\).

3. Reflection across the line [tex]$y=x$[/tex]:
- When a point \((x,y)\) is reflected across the line [tex]$y=x$[/tex], its new coordinates become \((y, x)\).
- For the point \((0, k)\), reflecting it across the line [tex]$y=x$[/tex] results in \((k, 0)\).
- This is not the same as \((0,k)\).

4. Reflection across the line [tex]$y=-x$[/tex]:
- When a point \((x,y)\) is reflected across the line [tex]$y=-x$[/tex], its new coordinates become \((-y, -x)\).
- For the point \((0, k)\), reflecting it across the line [tex]$y=-x$[/tex] results in \((-k, 0)\).
- This is not the same as \((0,k)\).

Therefore, the reflection that produces an image at the same coordinates, \((0, k)\), is a reflection across the [tex]$y$[/tex]-axis.

The correct answer is:
a reflection of the point across the [tex]$y$[/tex]-axis