Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's work through the problem step-by-step.
1. Identify the given information:
- Point A is at 6.
- Point C is at 1.875.
- The ratio \( AC:CB = 3:5 \).
2. Determine the length of \( AC \):
- Since point A is at 6 and point C is at 1.875, the distance \( AC \) can be found by subtracting the coordinate of point C from point A:
[tex]\[ AC = 6 - 1.875 = 4.125 \text{ units} \][/tex]
3. Set up the ratio equation:
- \( AC \) and \( CB \) are in the ratio of \( 3:5 \). Let the length of \( CB \) be \( x \) units.
- Then, \( AC = \frac{3}{5} x \).
4. Solve for \( x \):
- We already found that \( AC \) is 4.125 units. Using the ratio equation, we get:
[tex]\[ 4.125 = \frac{3}{5} x \][/tex]
- To solve for \( x \), multiply both sides by \( \frac{5}{3} \):
[tex]\[ x = 4.125 \times \frac{5}{3} = 6.875 \text{ units} \][/tex]
- Thus, \( CB = 6.875 \text{ units} \).
5. Find the total length \( AB \):
- \( AB = AC + CB \).
- So,
[tex]\[ AB = 4.125 + 6.875 = 11.0 \text{ units} \][/tex]
Therefore, the length of \( \overline{AB} \) is \( 11 \) units, and the correct answer is:
C. [tex]\( AB = 11 \)[/tex] units.
1. Identify the given information:
- Point A is at 6.
- Point C is at 1.875.
- The ratio \( AC:CB = 3:5 \).
2. Determine the length of \( AC \):
- Since point A is at 6 and point C is at 1.875, the distance \( AC \) can be found by subtracting the coordinate of point C from point A:
[tex]\[ AC = 6 - 1.875 = 4.125 \text{ units} \][/tex]
3. Set up the ratio equation:
- \( AC \) and \( CB \) are in the ratio of \( 3:5 \). Let the length of \( CB \) be \( x \) units.
- Then, \( AC = \frac{3}{5} x \).
4. Solve for \( x \):
- We already found that \( AC \) is 4.125 units. Using the ratio equation, we get:
[tex]\[ 4.125 = \frac{3}{5} x \][/tex]
- To solve for \( x \), multiply both sides by \( \frac{5}{3} \):
[tex]\[ x = 4.125 \times \frac{5}{3} = 6.875 \text{ units} \][/tex]
- Thus, \( CB = 6.875 \text{ units} \).
5. Find the total length \( AB \):
- \( AB = AC + CB \).
- So,
[tex]\[ AB = 4.125 + 6.875 = 11.0 \text{ units} \][/tex]
Therefore, the length of \( \overline{AB} \) is \( 11 \) units, and the correct answer is:
C. [tex]\( AB = 11 \)[/tex] units.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.