Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To plot the graph of the function \( y = -3x - 1 \) from \( x = -2 \) to \( x = 2 \), let's follow a step-by-step approach to understand how the graph would look.
### Step-by-Step Solution:
1. Define the function:
The given function is:
[tex]\[ y = -3x - 1 \][/tex]
2. Determine the range of \( x \):
We need to plot the graph for \( x \) values ranging from \( -2 \) to \( 2 \).
3. Calculate corresponding \( y \)-values for specific \( x \)-values:
Here, we will calculate \( y \)-values for some key \( x \)-values within the given range.
- For \( x = -2 \):
[tex]\[ y = -3(-2) - 1 = 6 - 1 = 5 \][/tex]
- For \( x = -1 \):
[tex]\[ y = -3(-1) - 1 = 3 - 1 = 2 \][/tex]
- For \( x = 0 \):
[tex]\[ y = -3(0) - 1 = 0 - 1 = -1 \][/tex]
- For \( x = 1 \):
[tex]\[ y = -3(1) - 1 = -3 - 1 = -4 \][/tex]
- For \( x = 2 \):
[tex]\[ y = -3(2) - 1 = -6 - 1 = -7 \][/tex]
4. Plot the points:
We have the following points \((x, y)\):
[tex]\[ (-2, 5), (-1, 2), (0, -1), (1, -4), (2, -7) \][/tex]
5. Draw the straight line:
Since the equation \( y = -3x - 1 \) is a linear equation, which means the graph will be a straight line passing through the points we have calculated above.
6. Graphical representation:
- Label the x-axis \( x \) and the y-axis \( y \).
- Plot the calculated points on the coordinate plane.
- Draw a straight line passing through these points to represent the equation.
Here is a rough sketch of how the graph should look:
```
7 | .
6 | .
5 | .
4 |
3 |
2 | .
1 |
0 | .
-1 | .
-2 |
-3 |
-4 | .
-5 |
-6 |
-7 | .
-8 |_________________________
-2 -1 0 1 2
```
Here's a summary of the coordinates plotted:
- \((-2, 5)\)
- \((-1, 2)\)
- \((0, -1)\)
- \((1, -4)\)
- \((2, -7)\)
Connect these points with a straight line, and you will have the graph of the function [tex]\( y = -3x - 1 \)[/tex] from [tex]\( x = -2 \)[/tex] to [tex]\( x = 2 \)[/tex].
### Step-by-Step Solution:
1. Define the function:
The given function is:
[tex]\[ y = -3x - 1 \][/tex]
2. Determine the range of \( x \):
We need to plot the graph for \( x \) values ranging from \( -2 \) to \( 2 \).
3. Calculate corresponding \( y \)-values for specific \( x \)-values:
Here, we will calculate \( y \)-values for some key \( x \)-values within the given range.
- For \( x = -2 \):
[tex]\[ y = -3(-2) - 1 = 6 - 1 = 5 \][/tex]
- For \( x = -1 \):
[tex]\[ y = -3(-1) - 1 = 3 - 1 = 2 \][/tex]
- For \( x = 0 \):
[tex]\[ y = -3(0) - 1 = 0 - 1 = -1 \][/tex]
- For \( x = 1 \):
[tex]\[ y = -3(1) - 1 = -3 - 1 = -4 \][/tex]
- For \( x = 2 \):
[tex]\[ y = -3(2) - 1 = -6 - 1 = -7 \][/tex]
4. Plot the points:
We have the following points \((x, y)\):
[tex]\[ (-2, 5), (-1, 2), (0, -1), (1, -4), (2, -7) \][/tex]
5. Draw the straight line:
Since the equation \( y = -3x - 1 \) is a linear equation, which means the graph will be a straight line passing through the points we have calculated above.
6. Graphical representation:
- Label the x-axis \( x \) and the y-axis \( y \).
- Plot the calculated points on the coordinate plane.
- Draw a straight line passing through these points to represent the equation.
Here is a rough sketch of how the graph should look:
```
7 | .
6 | .
5 | .
4 |
3 |
2 | .
1 |
0 | .
-1 | .
-2 |
-3 |
-4 | .
-5 |
-6 |
-7 | .
-8 |_________________________
-2 -1 0 1 2
```
Here's a summary of the coordinates plotted:
- \((-2, 5)\)
- \((-1, 2)\)
- \((0, -1)\)
- \((1, -4)\)
- \((2, -7)\)
Connect these points with a straight line, and you will have the graph of the function [tex]\( y = -3x - 1 \)[/tex] from [tex]\( x = -2 \)[/tex] to [tex]\( x = 2 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.