Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the rule that describes the translation of a rectangle on a coordinate plane, we need to consider the effects of translating the rectangle 5 units up and 3 units to the left.
1. Translation 5 units up: When an object is translated upwards on a coordinate plane, its y-coordinate increases by the number of units it is moved. This means we need to add 5 to the y-coordinate of every point on the rectangle.
2. Translation 3 units to the left: When an object is translated to the left on a coordinate plane, its x-coordinate decreases by the number of units it is moved. This means we need to subtract 3 from the x-coordinate of every point on the rectangle.
Therefore, to find the new coordinates \((x', y')\) of a point \((x, y)\) after translating it 5 units up and 3 units to the left, we apply these transformations:
- New x-coordinate: \( x' = x - 3 \)
- New y-coordinate: \( y' = y + 5 \)
Thus, the rule that describes the translation can be written as:
[tex]\[ (x, y) \rightarrow (x - 3, y + 5) \][/tex]
Examining the given options:
- \((x, y) \rightarrow (x + 5, y - 3)\)
- \((x, y) \rightarrow (x + 5, y + 3)\)
- \((x, y) \rightarrow (x - 3, y + 5)\)
- \((x, y) \rightarrow (x + 3, y + 5)\)
The correct rule matches:
[tex]\[ (x, y) \rightarrow (x - 3, y + 5) \][/tex]
So, the rule that describes the translation of the rectangle 5 units up and 3 units to the left is:
[tex]\[ \boxed{(x, y) \rightarrow (x - 3, y + 5)} \][/tex]
1. Translation 5 units up: When an object is translated upwards on a coordinate plane, its y-coordinate increases by the number of units it is moved. This means we need to add 5 to the y-coordinate of every point on the rectangle.
2. Translation 3 units to the left: When an object is translated to the left on a coordinate plane, its x-coordinate decreases by the number of units it is moved. This means we need to subtract 3 from the x-coordinate of every point on the rectangle.
Therefore, to find the new coordinates \((x', y')\) of a point \((x, y)\) after translating it 5 units up and 3 units to the left, we apply these transformations:
- New x-coordinate: \( x' = x - 3 \)
- New y-coordinate: \( y' = y + 5 \)
Thus, the rule that describes the translation can be written as:
[tex]\[ (x, y) \rightarrow (x - 3, y + 5) \][/tex]
Examining the given options:
- \((x, y) \rightarrow (x + 5, y - 3)\)
- \((x, y) \rightarrow (x + 5, y + 3)\)
- \((x, y) \rightarrow (x - 3, y + 5)\)
- \((x, y) \rightarrow (x + 3, y + 5)\)
The correct rule matches:
[tex]\[ (x, y) \rightarrow (x - 3, y + 5) \][/tex]
So, the rule that describes the translation of the rectangle 5 units up and 3 units to the left is:
[tex]\[ \boxed{(x, y) \rightarrow (x - 3, y + 5)} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.