Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which of the given points lies on the graph of the equation \( y = 2x + 6 \), we will check each point by substituting its \( x \) and \( y \) values into the equation and seeing if the equation holds true.
Let's examine each point step-by-step:
Option A: (0, 8)
1. Substitute \( x = 0 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(0) + 6 = 0 + 6 = 6 \][/tex]
2. Check if \( y = 8 \):
[tex]\[ 6 \neq 8 \][/tex]
Thus, point (0, 8) does not lie on the graph.
Option B: (-1, 4)
1. Substitute \( x = -1 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(-1) + 6 = -2 + 6 = 4 \][/tex]
2. Check if \( y = 4 \):
[tex]\[ 4 = 4 \][/tex]
Thus, point (-1, 4) lies on the graph of the equation.
Option C: (1, 6)
1. Substitute \( x = 1 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(1) + 6 = 2 + 6 = 8 \][/tex]
2. Check if \( y = 6 \):
[tex]\[ 8 \neq 6 \][/tex]
Thus, point (1, 6) does not lie on the graph.
Option D: (2, -6)
1. Substitute \( x = 2 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(2) + 6 = 4 + 6 = 10 \][/tex]
2. Check if \( y = -6 \):
[tex]\[ 10 \neq -6 \][/tex]
Thus, point (2, -6) does not lie on the graph.
From this analysis, the point that lies on the graph of the equation \( y = 2x + 6 \) is:
[tex]\[ \boxed{(-1, 4)} \][/tex]
Therefore, the correct answer is option B: [tex]\((-1, 4)\)[/tex].
Let's examine each point step-by-step:
Option A: (0, 8)
1. Substitute \( x = 0 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(0) + 6 = 0 + 6 = 6 \][/tex]
2. Check if \( y = 8 \):
[tex]\[ 6 \neq 8 \][/tex]
Thus, point (0, 8) does not lie on the graph.
Option B: (-1, 4)
1. Substitute \( x = -1 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(-1) + 6 = -2 + 6 = 4 \][/tex]
2. Check if \( y = 4 \):
[tex]\[ 4 = 4 \][/tex]
Thus, point (-1, 4) lies on the graph of the equation.
Option C: (1, 6)
1. Substitute \( x = 1 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(1) + 6 = 2 + 6 = 8 \][/tex]
2. Check if \( y = 6 \):
[tex]\[ 8 \neq 6 \][/tex]
Thus, point (1, 6) does not lie on the graph.
Option D: (2, -6)
1. Substitute \( x = 2 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(2) + 6 = 4 + 6 = 10 \][/tex]
2. Check if \( y = -6 \):
[tex]\[ 10 \neq -6 \][/tex]
Thus, point (2, -6) does not lie on the graph.
From this analysis, the point that lies on the graph of the equation \( y = 2x + 6 \) is:
[tex]\[ \boxed{(-1, 4)} \][/tex]
Therefore, the correct answer is option B: [tex]\((-1, 4)\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.