Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the expression \(\left(7^{-2} \cdot 7^3\right)^{-3}\) step-by-step, let's use the laws of exponents.
### Step 1: Simplify inside the parentheses
First, we have the expression inside the parentheses: \(7^{-2} \cdot 7^3\).
Using the product of powers property \(a^m \cdot a^n = a^{m+n}\), we combine the exponents:
[tex]\[7^{-2} \cdot 7^3 = 7^{-2 + 3}\][/tex]
### Step 2: Combine the exponents
Calculate the exponent inside the parentheses:
[tex]\[-2 + 3 = 1\][/tex]
So, the expression simplifies to:
[tex]\[7^1\][/tex]
Thus, the expression becomes:
[tex]\[\left(7^1\right)^{-3}\][/tex]
### Step 3: Apply the power of a power property
Now we have \(\left(7^1\right)^{-3}\). To simplify this, we use the power of a power property \((a^m)^n = a^{m \cdot n}\):
[tex]\[7^{1 \cdot (-3)}\][/tex]
### Step 4: Multiply the exponents
Multiply the exponents:
[tex]\[1 \cdot (-3) = -3\][/tex]
So, the expression simplifies to:
[tex]\[7^{-3}\][/tex]
### Step 5: Write as a fraction
By definition, a negative exponent indicates the reciprocal:
[tex]\[7^{-3} = \frac{1}{7^3}\][/tex]
Hence, the expression \(\left(7^{-2} \cdot 7^3\right)^{-3}\) is equivalent to \(\frac{1}{7^3}\).
### Conclusion
The equivalent expression is:
[tex]\[ \boxed{\frac{1}{7^3}} \][/tex]
### Step 1: Simplify inside the parentheses
First, we have the expression inside the parentheses: \(7^{-2} \cdot 7^3\).
Using the product of powers property \(a^m \cdot a^n = a^{m+n}\), we combine the exponents:
[tex]\[7^{-2} \cdot 7^3 = 7^{-2 + 3}\][/tex]
### Step 2: Combine the exponents
Calculate the exponent inside the parentheses:
[tex]\[-2 + 3 = 1\][/tex]
So, the expression simplifies to:
[tex]\[7^1\][/tex]
Thus, the expression becomes:
[tex]\[\left(7^1\right)^{-3}\][/tex]
### Step 3: Apply the power of a power property
Now we have \(\left(7^1\right)^{-3}\). To simplify this, we use the power of a power property \((a^m)^n = a^{m \cdot n}\):
[tex]\[7^{1 \cdot (-3)}\][/tex]
### Step 4: Multiply the exponents
Multiply the exponents:
[tex]\[1 \cdot (-3) = -3\][/tex]
So, the expression simplifies to:
[tex]\[7^{-3}\][/tex]
### Step 5: Write as a fraction
By definition, a negative exponent indicates the reciprocal:
[tex]\[7^{-3} = \frac{1}{7^3}\][/tex]
Hence, the expression \(\left(7^{-2} \cdot 7^3\right)^{-3}\) is equivalent to \(\frac{1}{7^3}\).
### Conclusion
The equivalent expression is:
[tex]\[ \boxed{\frac{1}{7^3}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.