At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's break down the problem step-by-step and solve for the times when the height of the object is 57 feet and when it reaches the ground.
### Given
The height \( h \) of the object after \( t \) seconds is modeled by the equation:
[tex]\[ h = -16t^2 + 62t + 14 \][/tex]
### Part 1: When will the height be 57 feet?
To find the time \( t \) when the height \( h \) is 57 feet, we set up the equation:
[tex]\[ -16t^2 + 62t + 14 = 57 \][/tex]
Next, we rearrange this equation to bring all terms to one side:
[tex]\[ -16t^2 + 62t + 14 - 57 = 0 \][/tex]
[tex]\[ -16t^2 + 62t - 43 = 0 \][/tex]
This is a quadratic equation in the form \( at^2 + bt + c = 0 \) where:
[tex]\[ a = -16, \quad b = 62, \quad c = -43 \][/tex]
Solving this quadratic equation, we get the solutions:
[tex]\[ t = \frac{31}{16} - \frac{\sqrt{273}}{16} \][/tex]
[tex]\[ t = \frac{31}{16} + \frac{\sqrt{273}}{16} \][/tex]
So, the object will be 57 feet high at:
[tex]\[ t = \frac{31 - \sqrt{273}}{16} \quad \text{and} \quad t = \frac{31 + \sqrt{273}}{16} \][/tex]
### Part 2: When will the object reach the ground?
To find the time \( t \) when the object reaches the ground, we set \( h = 0 \) in the height equation:
[tex]\[ -16t^2 + 62t + 14 = 0 \][/tex]
This is already in quadratic form \( at^2 + bt + c = 0 \) where:
[tex]\[ a = -16, \quad b = 62, \quad c = 14 \][/tex]
Solving this quadratic equation, we get the solutions:
[tex]\[ t = \frac{31}{16} - \frac{\sqrt{1185}}{16} \][/tex]
[tex]\[ t = \frac{31}{16} + \frac{\sqrt{1185}}{16} \][/tex]
So, the object will reach the ground at:
[tex]\[ t = \frac{31 - \sqrt{1185}}{16} \quad \text{and} \quad t = \frac{31 + \sqrt{1185}}{16} \][/tex]
### Summary
In conclusion:
- The times when the object will be 57 feet high are:
[tex]\[ t = \frac{31 - \sqrt{273}}{16} \quad \text{seconds} \][/tex]
[tex]\[ t = \frac{31 + \sqrt{273}}{16} \quad \text{seconds} \][/tex]
- The times when the object will reach the ground are:
[tex]\[ t = \frac{31 - \sqrt{1185}}{16} \quad \text{seconds} \][/tex]
[tex]\[ t = \frac{31 + \sqrt{1185}}{16} \quad \text{seconds} \][/tex]
### Given
The height \( h \) of the object after \( t \) seconds is modeled by the equation:
[tex]\[ h = -16t^2 + 62t + 14 \][/tex]
### Part 1: When will the height be 57 feet?
To find the time \( t \) when the height \( h \) is 57 feet, we set up the equation:
[tex]\[ -16t^2 + 62t + 14 = 57 \][/tex]
Next, we rearrange this equation to bring all terms to one side:
[tex]\[ -16t^2 + 62t + 14 - 57 = 0 \][/tex]
[tex]\[ -16t^2 + 62t - 43 = 0 \][/tex]
This is a quadratic equation in the form \( at^2 + bt + c = 0 \) where:
[tex]\[ a = -16, \quad b = 62, \quad c = -43 \][/tex]
Solving this quadratic equation, we get the solutions:
[tex]\[ t = \frac{31}{16} - \frac{\sqrt{273}}{16} \][/tex]
[tex]\[ t = \frac{31}{16} + \frac{\sqrt{273}}{16} \][/tex]
So, the object will be 57 feet high at:
[tex]\[ t = \frac{31 - \sqrt{273}}{16} \quad \text{and} \quad t = \frac{31 + \sqrt{273}}{16} \][/tex]
### Part 2: When will the object reach the ground?
To find the time \( t \) when the object reaches the ground, we set \( h = 0 \) in the height equation:
[tex]\[ -16t^2 + 62t + 14 = 0 \][/tex]
This is already in quadratic form \( at^2 + bt + c = 0 \) where:
[tex]\[ a = -16, \quad b = 62, \quad c = 14 \][/tex]
Solving this quadratic equation, we get the solutions:
[tex]\[ t = \frac{31}{16} - \frac{\sqrt{1185}}{16} \][/tex]
[tex]\[ t = \frac{31}{16} + \frac{\sqrt{1185}}{16} \][/tex]
So, the object will reach the ground at:
[tex]\[ t = \frac{31 - \sqrt{1185}}{16} \quad \text{and} \quad t = \frac{31 + \sqrt{1185}}{16} \][/tex]
### Summary
In conclusion:
- The times when the object will be 57 feet high are:
[tex]\[ t = \frac{31 - \sqrt{273}}{16} \quad \text{seconds} \][/tex]
[tex]\[ t = \frac{31 + \sqrt{273}}{16} \quad \text{seconds} \][/tex]
- The times when the object will reach the ground are:
[tex]\[ t = \frac{31 - \sqrt{1185}}{16} \quad \text{seconds} \][/tex]
[tex]\[ t = \frac{31 + \sqrt{1185}}{16} \quad \text{seconds} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.