At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To transform the given matrix into reduced row echelon form (RREF), we need to apply a series of row operations to make it conform to the rules of RREF, where:
1. The leading entry in each nonzero row is 1.
2. Each leading 1 is the only nonzero entry in its column.
3. The leading 1 in a given row is to the right of the leading 1 in the row above it.
4. Rows with all zero elements, if any, are below rows with nonzero elements.
Given the matrix:
[tex]\[ \left[\begin{array}{ccc|c} 2 & -1 & -4 & 7 \\ 0 & -30 & 20 & -50 \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
Let's denote this matrix as \( A \).
### Step-by-Step Transformation
1. Normalize the first row to have a leading 1:
To achieve this, divide the entire first row by 2:
[tex]\[ \frac{1}{2} \times \left[\begin{array}{ccc|c} 2 & -1 & -4 & 7 \end{array}\right] = \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \end{array}\right] \][/tex]
So, our system becomes:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & -30 & 20 & -50 \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
2. Transform the second row to make the first column zero (it is already zero, so we skip this step).
3. Normalize the second row to have a leading 1 in the second position:
Divide the second row by -30:
[tex]\[ \frac{1}{-30} \times \left[\begin{array}{ccc|c} 0 & -30 & 20 & -50 \end{array}\right] = \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] \][/tex]
So, our updated system is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
4. Transform the first row to ensure the second column is zero except for the leading one:
Subtract \(-\frac{1}{2}\) times the second row from the first row:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \end{array}\right] + \frac{1}{2} \times \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \end{array}\right] \][/tex]
Updated system:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
5. Normalize the third row to have a leading 1 in the third position by dividing the third row by 44:
[tex]\[ \frac{1}{44} \times \left[\begin{array}{ccc|c} 0 & 0 & 44 & -44 \end{array}\right] = \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Updated system:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
6. Transform the first and second rows to make the third column zero except for the leading one:
- First row:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \end{array}\right] + \frac{10}{3} \times \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \end{array}\right] \][/tex]
- Second row:
[tex]\[ \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] + \frac{2}{3} \times \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 0 & 1 & 0 & 1 \end{array}\right] \][/tex]
Finally, the transformed matrix in reduced row echelon form is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
To complete the solution, we fill in the \(\square\) in the RREF form asked in the question:
[tex]\[ \left[\begin{array}{lll|l} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
So the values in the [tex]\(\square\)[/tex] are 2, 1, and -1 respectively.
1. The leading entry in each nonzero row is 1.
2. Each leading 1 is the only nonzero entry in its column.
3. The leading 1 in a given row is to the right of the leading 1 in the row above it.
4. Rows with all zero elements, if any, are below rows with nonzero elements.
Given the matrix:
[tex]\[ \left[\begin{array}{ccc|c} 2 & -1 & -4 & 7 \\ 0 & -30 & 20 & -50 \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
Let's denote this matrix as \( A \).
### Step-by-Step Transformation
1. Normalize the first row to have a leading 1:
To achieve this, divide the entire first row by 2:
[tex]\[ \frac{1}{2} \times \left[\begin{array}{ccc|c} 2 & -1 & -4 & 7 \end{array}\right] = \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \end{array}\right] \][/tex]
So, our system becomes:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & -30 & 20 & -50 \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
2. Transform the second row to make the first column zero (it is already zero, so we skip this step).
3. Normalize the second row to have a leading 1 in the second position:
Divide the second row by -30:
[tex]\[ \frac{1}{-30} \times \left[\begin{array}{ccc|c} 0 & -30 & 20 & -50 \end{array}\right] = \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] \][/tex]
So, our updated system is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
4. Transform the first row to ensure the second column is zero except for the leading one:
Subtract \(-\frac{1}{2}\) times the second row from the first row:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \end{array}\right] + \frac{1}{2} \times \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \end{array}\right] \][/tex]
Updated system:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
5. Normalize the third row to have a leading 1 in the third position by dividing the third row by 44:
[tex]\[ \frac{1}{44} \times \left[\begin{array}{ccc|c} 0 & 0 & 44 & -44 \end{array}\right] = \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Updated system:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
6. Transform the first and second rows to make the third column zero except for the leading one:
- First row:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \end{array}\right] + \frac{10}{3} \times \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \end{array}\right] \][/tex]
- Second row:
[tex]\[ \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] + \frac{2}{3} \times \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 0 & 1 & 0 & 1 \end{array}\right] \][/tex]
Finally, the transformed matrix in reduced row echelon form is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
To complete the solution, we fill in the \(\square\) in the RREF form asked in the question:
[tex]\[ \left[\begin{array}{lll|l} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
So the values in the [tex]\(\square\)[/tex] are 2, 1, and -1 respectively.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.