Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To transform the given matrix into reduced row echelon form (RREF), we need to apply a series of row operations to make it conform to the rules of RREF, where:
1. The leading entry in each nonzero row is 1.
2. Each leading 1 is the only nonzero entry in its column.
3. The leading 1 in a given row is to the right of the leading 1 in the row above it.
4. Rows with all zero elements, if any, are below rows with nonzero elements.
Given the matrix:
[tex]\[ \left[\begin{array}{ccc|c} 2 & -1 & -4 & 7 \\ 0 & -30 & 20 & -50 \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
Let's denote this matrix as \( A \).
### Step-by-Step Transformation
1. Normalize the first row to have a leading 1:
To achieve this, divide the entire first row by 2:
[tex]\[ \frac{1}{2} \times \left[\begin{array}{ccc|c} 2 & -1 & -4 & 7 \end{array}\right] = \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \end{array}\right] \][/tex]
So, our system becomes:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & -30 & 20 & -50 \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
2. Transform the second row to make the first column zero (it is already zero, so we skip this step).
3. Normalize the second row to have a leading 1 in the second position:
Divide the second row by -30:
[tex]\[ \frac{1}{-30} \times \left[\begin{array}{ccc|c} 0 & -30 & 20 & -50 \end{array}\right] = \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] \][/tex]
So, our updated system is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
4. Transform the first row to ensure the second column is zero except for the leading one:
Subtract \(-\frac{1}{2}\) times the second row from the first row:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \end{array}\right] + \frac{1}{2} \times \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \end{array}\right] \][/tex]
Updated system:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
5. Normalize the third row to have a leading 1 in the third position by dividing the third row by 44:
[tex]\[ \frac{1}{44} \times \left[\begin{array}{ccc|c} 0 & 0 & 44 & -44 \end{array}\right] = \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Updated system:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
6. Transform the first and second rows to make the third column zero except for the leading one:
- First row:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \end{array}\right] + \frac{10}{3} \times \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \end{array}\right] \][/tex]
- Second row:
[tex]\[ \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] + \frac{2}{3} \times \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 0 & 1 & 0 & 1 \end{array}\right] \][/tex]
Finally, the transformed matrix in reduced row echelon form is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
To complete the solution, we fill in the \(\square\) in the RREF form asked in the question:
[tex]\[ \left[\begin{array}{lll|l} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
So the values in the [tex]\(\square\)[/tex] are 2, 1, and -1 respectively.
1. The leading entry in each nonzero row is 1.
2. Each leading 1 is the only nonzero entry in its column.
3. The leading 1 in a given row is to the right of the leading 1 in the row above it.
4. Rows with all zero elements, if any, are below rows with nonzero elements.
Given the matrix:
[tex]\[ \left[\begin{array}{ccc|c} 2 & -1 & -4 & 7 \\ 0 & -30 & 20 & -50 \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
Let's denote this matrix as \( A \).
### Step-by-Step Transformation
1. Normalize the first row to have a leading 1:
To achieve this, divide the entire first row by 2:
[tex]\[ \frac{1}{2} \times \left[\begin{array}{ccc|c} 2 & -1 & -4 & 7 \end{array}\right] = \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \end{array}\right] \][/tex]
So, our system becomes:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & -30 & 20 & -50 \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
2. Transform the second row to make the first column zero (it is already zero, so we skip this step).
3. Normalize the second row to have a leading 1 in the second position:
Divide the second row by -30:
[tex]\[ \frac{1}{-30} \times \left[\begin{array}{ccc|c} 0 & -30 & 20 & -50 \end{array}\right] = \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] \][/tex]
So, our updated system is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
4. Transform the first row to ensure the second column is zero except for the leading one:
Subtract \(-\frac{1}{2}\) times the second row from the first row:
[tex]\[ \left[\begin{array}{ccc|c} 1 & -\frac{1}{2} & -2 & \frac{7}{2} \end{array}\right] + \frac{1}{2} \times \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \end{array}\right] \][/tex]
Updated system:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 44 & -44 \end{array}\right] \][/tex]
5. Normalize the third row to have a leading 1 in the third position by dividing the third row by 44:
[tex]\[ \frac{1}{44} \times \left[\begin{array}{ccc|c} 0 & 0 & 44 & -44 \end{array}\right] = \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Updated system:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \\ 0 & 1 & -\frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
6. Transform the first and second rows to make the third column zero except for the leading one:
- First row:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & -\frac{10}{3} & \frac{31}{6} \end{array}\right] + \frac{10}{3} \times \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \end{array}\right] \][/tex]
- Second row:
[tex]\[ \left[\begin{array}{ccc|c} 0 & 1 & -\frac{2}{3} & \frac{5}{3} \end{array}\right] + \frac{2}{3} \times \left[\begin{array}{ccc|c} 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
Simplifying, we get:
[tex]\[ \left[\begin{array}{ccc|c} 0 & 1 & 0 & 1 \end{array}\right] \][/tex]
Finally, the transformed matrix in reduced row echelon form is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
To complete the solution, we fill in the \(\square\) in the RREF form asked in the question:
[tex]\[ \left[\begin{array}{lll|l} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \][/tex]
So the values in the [tex]\(\square\)[/tex] are 2, 1, and -1 respectively.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.