At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given tables represents a linear function, we need to examine whether the differences between consecutive \( y \)-values are consistent, indicating a constant rate of change, or slope.
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & \frac{3}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
The \( y \)-values are \(\frac{1}{2}, 1, \frac{3}{2}, 2 \).
Calculate the differences between consecutive \( y \)-values:
[tex]\[ \begin{array}{l} 1 - \frac{1}{2} = \frac{1}{2} \\ \frac{3}{2} - 1 = \frac{1}{2} \\ 2 - \frac{3}{2} = \frac{1}{2} \\ \end{array} \][/tex]
The differences are constant (\(\frac{1}{2}\)), indicating that Table 1 represents a linear function.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{1} \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]
The \( y \)-values are \(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \).
Calculate the differences between consecutive \( y \)-values:
[tex]\[ \begin{array}{l} \frac{1}{2} - 1 \neq \text{constant} \\ \frac{1}{3} - \frac{1}{2} \neq \text{constant} \\ \frac{1}{4} - \frac{1}{3} \neq \text{constant} \end{array} \][/tex]
The differences are not consistent, indicating that Table 2 does not represent a linear function.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]
The \( y \)-values are \(7, 9, 13, 21\).
Calculate the differences between consecutive \( y \)-values:
[tex]\[ \begin{array}{l} 9 - 7 = 2 \\ 13 - 9 = 4 \\ 21 - 13 = 8 \end{array} \][/tex]
The differences are not constant, indicating that Table 3 does not represent a linear function.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]
The \( y \)-values are \(0, 6, 16, 30\).
Calculate the differences between consecutive \( y \)-values:
[tex]\[ \begin{array}{l} 6 - 0 = 6 \\ 16 - 6 = 10 \\ 30 - 16 = 14 \end{array} \][/tex]
The differences are not constant, indicating that Table 4 does not represent a linear function.
### Conclusion:
Upon examining all the tables, Table 1 is the only one that has consistent differences between the \( y \)-values. Therefore, Table 1 represents a linear function.
Thus, the table that represents a linear function is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & \frac{3}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & \frac{3}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
The \( y \)-values are \(\frac{1}{2}, 1, \frac{3}{2}, 2 \).
Calculate the differences between consecutive \( y \)-values:
[tex]\[ \begin{array}{l} 1 - \frac{1}{2} = \frac{1}{2} \\ \frac{3}{2} - 1 = \frac{1}{2} \\ 2 - \frac{3}{2} = \frac{1}{2} \\ \end{array} \][/tex]
The differences are constant (\(\frac{1}{2}\)), indicating that Table 1 represents a linear function.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{1} \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]
The \( y \)-values are \(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \).
Calculate the differences between consecutive \( y \)-values:
[tex]\[ \begin{array}{l} \frac{1}{2} - 1 \neq \text{constant} \\ \frac{1}{3} - \frac{1}{2} \neq \text{constant} \\ \frac{1}{4} - \frac{1}{3} \neq \text{constant} \end{array} \][/tex]
The differences are not consistent, indicating that Table 2 does not represent a linear function.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]
The \( y \)-values are \(7, 9, 13, 21\).
Calculate the differences between consecutive \( y \)-values:
[tex]\[ \begin{array}{l} 9 - 7 = 2 \\ 13 - 9 = 4 \\ 21 - 13 = 8 \end{array} \][/tex]
The differences are not constant, indicating that Table 3 does not represent a linear function.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]
The \( y \)-values are \(0, 6, 16, 30\).
Calculate the differences between consecutive \( y \)-values:
[tex]\[ \begin{array}{l} 6 - 0 = 6 \\ 16 - 6 = 10 \\ 30 - 16 = 14 \end{array} \][/tex]
The differences are not constant, indicating that Table 4 does not represent a linear function.
### Conclusion:
Upon examining all the tables, Table 1 is the only one that has consistent differences between the \( y \)-values. Therefore, Table 1 represents a linear function.
Thus, the table that represents a linear function is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & \frac{3}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.