Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which table represents a linear function, we should verify if the relationship between \( x \) and \( y \) in each table follows a constant rate of change, i.e., the slope is constant.
Let's examine each table in detail:
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 9 - 5 = 4
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 5 - 9 = -4
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 9 - 5 = 4
The changes in \( y \) are not consistent. Therefore, Table 1 does not represent a linear function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - (-5) = 15
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = -15 - 10 = -25
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 20 - (-15) = 35
The changes in \( y \) are wildly inconsistent. Therefore, Table 2 does not represent a linear function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - 5 = 5
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 20 - 10 = 10
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 40 - 20 = 20
Although the increments in \( y \) increase, they do so in a quadratic manner rather than linearly. Hence, Table 3 does not represent a linear function.
### Table 4
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 0 - (-5) = 5
There's only one interval to check, and it shows a constant rate of change. Thus, Table 4 represents a linear function.
Based on our detailed examination, the table that represents a linear function is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Therefore, the fourth table represents a linear function.
Let's examine each table in detail:
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 9 - 5 = 4
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 5 - 9 = -4
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 9 - 5 = 4
The changes in \( y \) are not consistent. Therefore, Table 1 does not represent a linear function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - (-5) = 15
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = -15 - 10 = -25
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 20 - (-15) = 35
The changes in \( y \) are wildly inconsistent. Therefore, Table 2 does not represent a linear function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - 5 = 5
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 20 - 10 = 10
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 40 - 20 = 20
Although the increments in \( y \) increase, they do so in a quadratic manner rather than linearly. Hence, Table 3 does not represent a linear function.
### Table 4
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 0 - (-5) = 5
There's only one interval to check, and it shows a constant rate of change. Thus, Table 4 represents a linear function.
Based on our detailed examination, the table that represents a linear function is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Therefore, the fourth table represents a linear function.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.