Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which table represents a linear function, we should verify if the relationship between \( x \) and \( y \) in each table follows a constant rate of change, i.e., the slope is constant.
Let's examine each table in detail:
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 9 - 5 = 4
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 5 - 9 = -4
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 9 - 5 = 4
The changes in \( y \) are not consistent. Therefore, Table 1 does not represent a linear function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - (-5) = 15
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = -15 - 10 = -25
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 20 - (-15) = 35
The changes in \( y \) are wildly inconsistent. Therefore, Table 2 does not represent a linear function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - 5 = 5
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 20 - 10 = 10
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 40 - 20 = 20
Although the increments in \( y \) increase, they do so in a quadratic manner rather than linearly. Hence, Table 3 does not represent a linear function.
### Table 4
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 0 - (-5) = 5
There's only one interval to check, and it shows a constant rate of change. Thus, Table 4 represents a linear function.
Based on our detailed examination, the table that represents a linear function is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Therefore, the fourth table represents a linear function.
Let's examine each table in detail:
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 9 - 5 = 4
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 5 - 9 = -4
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 9 - 5 = 4
The changes in \( y \) are not consistent. Therefore, Table 1 does not represent a linear function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - (-5) = 15
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = -15 - 10 = -25
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 20 - (-15) = 35
The changes in \( y \) are wildly inconsistent. Therefore, Table 2 does not represent a linear function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - 5 = 5
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 20 - 10 = 10
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 40 - 20 = 20
Although the increments in \( y \) increase, they do so in a quadratic manner rather than linearly. Hence, Table 3 does not represent a linear function.
### Table 4
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 0 - (-5) = 5
There's only one interval to check, and it shows a constant rate of change. Thus, Table 4 represents a linear function.
Based on our detailed examination, the table that represents a linear function is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Therefore, the fourth table represents a linear function.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.