Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which table represents a linear function, we should verify if the relationship between \( x \) and \( y \) in each table follows a constant rate of change, i.e., the slope is constant.
Let's examine each table in detail:
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 9 - 5 = 4
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 5 - 9 = -4
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 9 - 5 = 4
The changes in \( y \) are not consistent. Therefore, Table 1 does not represent a linear function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - (-5) = 15
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = -15 - 10 = -25
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 20 - (-15) = 35
The changes in \( y \) are wildly inconsistent. Therefore, Table 2 does not represent a linear function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - 5 = 5
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 20 - 10 = 10
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 40 - 20 = 20
Although the increments in \( y \) increase, they do so in a quadratic manner rather than linearly. Hence, Table 3 does not represent a linear function.
### Table 4
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 0 - (-5) = 5
There's only one interval to check, and it shows a constant rate of change. Thus, Table 4 represents a linear function.
Based on our detailed examination, the table that represents a linear function is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Therefore, the fourth table represents a linear function.
Let's examine each table in detail:
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 9 \\ \hline 3 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 9 - 5 = 4
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 5 - 9 = -4
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 9 - 5 = 4
The changes in \( y \) are not consistent. Therefore, Table 1 does not represent a linear function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 10 \\ \hline 3 & -15 \\ \hline 4 & 20 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - (-5) = 15
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = -15 - 10 = -25
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 20 - (-15) = 35
The changes in \( y \) are wildly inconsistent. Therefore, Table 2 does not represent a linear function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 10 \\ \hline 3 & 20 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 10 - 5 = 5
- From \( x = 2 \) to \( x = 3 \): Change in \( y \) = 20 - 10 = 10
- From \( x = 3 \) to \( x = 4 \): Change in \( y \) = 40 - 20 = 20
Although the increments in \( y \) increase, they do so in a quadratic manner rather than linearly. Hence, Table 3 does not represent a linear function.
### Table 4
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
The changes in \( x \) and \( y \):
- From \( x = 1 \) to \( x = 2 \): Change in \( y \) = 0 - (-5) = 5
There's only one interval to check, and it shows a constant rate of change. Thus, Table 4 represents a linear function.
Based on our detailed examination, the table that represents a linear function is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -5 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
Therefore, the fourth table represents a linear function.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.