Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine where the function \(\tan \theta\) is undefined, we need to recall the property of the tangent function. The tangent function, \(\tan \theta\), can be expressed as:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
This ratio becomes undefined wherever \(\cos \theta = 0\), because dividing by zero is undefined.
To identify these points, let's think about the values of \(\theta\) where \(\cos \theta = 0\). The cosine function \(\cos \theta\) equals zero at odd multiples of \(\frac{\pi}{2}\), i.e.,
[tex]\[ \theta = \frac{(2n+1)\pi}{2} \quad \text{for any integer } n. \][/tex]
Let's evaluate each option:
A. \(\theta = \pi\)
[tex]\[ \cos \pi = -1 \quad \Rightarrow \tan \pi = \frac{\sin \pi}{\cos \pi} = \frac{0}{-1} = 0 \][/tex]
Since \(\cos \pi \neq 0\), \(\tan \pi\) is not undefined.
B. \(\theta = \frac{3\pi}{2}\)
[tex]\[ \cos \frac{3\pi}{2} = 0 \quad \Rightarrow \tan \frac{3\pi}{2} = \frac{\sin \frac{3\pi}{2}}{\cos \frac{3\pi}{2}} = \frac{-1}{0} \][/tex]
Since \cos\left(\frac{3\pi}{2}\right) = 0, \(\tan \frac{3\pi}{2}\) is undefined.
C. \(\theta = \frac{\pi}{2}\)
[tex]\[ \cos \frac{\pi}{2} = 0 \quad \Rightarrow \tan \frac{\pi}{2} = \frac{\sin \frac{\pi}{2}}{\cos \frac{\pi}{2}} = \frac{1}{0} \][/tex]
Since \cos\left(\frac{\pi}{2}\right) = 0, \(\tan \frac{\pi}{2}\) is undefined.
D. \(\theta = 0\)
[tex]\[ \cos 0 = 1 \quad \Rightarrow \tan 0 = \frac{\sin 0}{\cos 0} = \frac{0}{1} = 0 \][/tex]
Since \cos 0 \neq 0, \(\tan 0\) is not undefined.
Thus, the values of \(\theta\) for which \(\tan \theta\) is undefined are:
[tex]\[ B. \frac{3 \pi}{2} \][/tex]
[tex]\[ C. \frac{\pi}{2} \][/tex]
These correspond to options B and C.
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
This ratio becomes undefined wherever \(\cos \theta = 0\), because dividing by zero is undefined.
To identify these points, let's think about the values of \(\theta\) where \(\cos \theta = 0\). The cosine function \(\cos \theta\) equals zero at odd multiples of \(\frac{\pi}{2}\), i.e.,
[tex]\[ \theta = \frac{(2n+1)\pi}{2} \quad \text{for any integer } n. \][/tex]
Let's evaluate each option:
A. \(\theta = \pi\)
[tex]\[ \cos \pi = -1 \quad \Rightarrow \tan \pi = \frac{\sin \pi}{\cos \pi} = \frac{0}{-1} = 0 \][/tex]
Since \(\cos \pi \neq 0\), \(\tan \pi\) is not undefined.
B. \(\theta = \frac{3\pi}{2}\)
[tex]\[ \cos \frac{3\pi}{2} = 0 \quad \Rightarrow \tan \frac{3\pi}{2} = \frac{\sin \frac{3\pi}{2}}{\cos \frac{3\pi}{2}} = \frac{-1}{0} \][/tex]
Since \cos\left(\frac{3\pi}{2}\right) = 0, \(\tan \frac{3\pi}{2}\) is undefined.
C. \(\theta = \frac{\pi}{2}\)
[tex]\[ \cos \frac{\pi}{2} = 0 \quad \Rightarrow \tan \frac{\pi}{2} = \frac{\sin \frac{\pi}{2}}{\cos \frac{\pi}{2}} = \frac{1}{0} \][/tex]
Since \cos\left(\frac{\pi}{2}\right) = 0, \(\tan \frac{\pi}{2}\) is undefined.
D. \(\theta = 0\)
[tex]\[ \cos 0 = 1 \quad \Rightarrow \tan 0 = \frac{\sin 0}{\cos 0} = \frac{0}{1} = 0 \][/tex]
Since \cos 0 \neq 0, \(\tan 0\) is not undefined.
Thus, the values of \(\theta\) for which \(\tan \theta\) is undefined are:
[tex]\[ B. \frac{3 \pi}{2} \][/tex]
[tex]\[ C. \frac{\pi}{2} \][/tex]
These correspond to options B and C.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.