Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
### Step-by-Step Solution:
1. Identify the Given Values:
- The edge length of the square base of the pyramid is \( 5 \, \text{cm} \).
- The height of the pyramid is \( 7 \, \text{cm} \).
2. Calculate the Area of the Base:
Since the base is a square, the area \( A \) of the base can be calculated using the formula for the area of a square:
[tex]\[ \text{Area of the base} = \text{edge length}^2 = 5 \, \text{cm} \times 5 \, \text{cm} = 25 \, \text{cm}^2 \][/tex]
3. Use the Formula for the Volume of a Pyramid:
The volume \( V \) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
Substituting the values we calculated and were given:
[tex]\[ V = \frac{1}{3} \times 25 \, \text{cm}^2 \times 7 \, \text{cm} \][/tex]
4. Perform the Multiplications:
First, multiply the base area by the height:
[tex]\[ 25 \, \text{cm}^2 \times 7 \, \text{cm} = 175 \, \text{cm}^3 \][/tex]
5. Divide by 3:
Now, divide the product by 3 to find the volume:
[tex]\[ V = \frac{175 \, \text{cm}^3}{3} = 58.33333333333333 \, \text{cm}^3 \][/tex]
6. Express the Volume as a Mixed Number:
To express the volume as a mixed number:
[tex]\[ 58.33333333333333 \approx 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
### Conclusion:
The volume of the pyramid, given a square base with edge length \( 5 \, \text{cm} \) and a height of \( 7 \, \text{cm} \), is:
[tex]\[ 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
### Answer:
[tex]\[ \boxed{58 \frac{1}{3} \, \text{cm}^3} \][/tex]
1. Identify the Given Values:
- The edge length of the square base of the pyramid is \( 5 \, \text{cm} \).
- The height of the pyramid is \( 7 \, \text{cm} \).
2. Calculate the Area of the Base:
Since the base is a square, the area \( A \) of the base can be calculated using the formula for the area of a square:
[tex]\[ \text{Area of the base} = \text{edge length}^2 = 5 \, \text{cm} \times 5 \, \text{cm} = 25 \, \text{cm}^2 \][/tex]
3. Use the Formula for the Volume of a Pyramid:
The volume \( V \) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
Substituting the values we calculated and were given:
[tex]\[ V = \frac{1}{3} \times 25 \, \text{cm}^2 \times 7 \, \text{cm} \][/tex]
4. Perform the Multiplications:
First, multiply the base area by the height:
[tex]\[ 25 \, \text{cm}^2 \times 7 \, \text{cm} = 175 \, \text{cm}^3 \][/tex]
5. Divide by 3:
Now, divide the product by 3 to find the volume:
[tex]\[ V = \frac{175 \, \text{cm}^3}{3} = 58.33333333333333 \, \text{cm}^3 \][/tex]
6. Express the Volume as a Mixed Number:
To express the volume as a mixed number:
[tex]\[ 58.33333333333333 \approx 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
### Conclusion:
The volume of the pyramid, given a square base with edge length \( 5 \, \text{cm} \) and a height of \( 7 \, \text{cm} \), is:
[tex]\[ 58 \frac{1}{3} \, \text{cm}^3 \][/tex]
### Answer:
[tex]\[ \boxed{58 \frac{1}{3} \, \text{cm}^3} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.