At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the equation step-by-step:
Given equation:
[tex]\[ 6(x + 5) = 3(2x + 10) \][/tex]
1. Distribute the numbers outside the parentheses on both sides of the equation:
- Left side: \( 6(x + 5) \)
[tex]\[ \Rightarrow 6x + 30 \][/tex]
- Right side: \( 3(2x + 10) \)
[tex]\[ \Rightarrow 6x + 30 \][/tex]
So, the equation becomes:
[tex]\[ 6x + 30 = 6x + 30 \][/tex]
2. Simplify the equation:
- Subtract \( 6x \) from both sides of the equation:
[tex]\[ 6x + 30 - 6x = 6x + 30 - 6x \][/tex]
[tex]\[ 30 = 30 \][/tex]
3. Interpret the simplified form:
- After simplifying, we end up with the equation \( 30 = 30 \), which is a true statement and holds no matter what value \( x \) takes.
This means that there are no specific values for \( x \) that make this equation true because it's always true for any value of \( x \).
Therefore, the solution to the equation is:
[tex]\[ \text{All real numbers} \][/tex]
Given equation:
[tex]\[ 6(x + 5) = 3(2x + 10) \][/tex]
1. Distribute the numbers outside the parentheses on both sides of the equation:
- Left side: \( 6(x + 5) \)
[tex]\[ \Rightarrow 6x + 30 \][/tex]
- Right side: \( 3(2x + 10) \)
[tex]\[ \Rightarrow 6x + 30 \][/tex]
So, the equation becomes:
[tex]\[ 6x + 30 = 6x + 30 \][/tex]
2. Simplify the equation:
- Subtract \( 6x \) from both sides of the equation:
[tex]\[ 6x + 30 - 6x = 6x + 30 - 6x \][/tex]
[tex]\[ 30 = 30 \][/tex]
3. Interpret the simplified form:
- After simplifying, we end up with the equation \( 30 = 30 \), which is a true statement and holds no matter what value \( x \) takes.
This means that there are no specific values for \( x \) that make this equation true because it's always true for any value of \( x \).
Therefore, the solution to the equation is:
[tex]\[ \text{All real numbers} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.