Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve this problem step by step:
We need to calculate the difference between the two polynomials:
[tex]\[ P_1 = x^4 + x^3 + x^2 + x \][/tex]
and
[tex]\[ P_2 = x^4 - x^3 + x^2 - x \][/tex]
To find the difference \( P_1 - P_2 \), we will subtract \( P_2 \) from \( P_1 \):
1. Write down both polynomials:
[tex]\[ P_1 = x^4 + x^3 + x^2 + x \][/tex]
[tex]\[ P_2 = x^4 - x^3 + x^2 - x \][/tex]
2. Subtract \( P_2 \) from \( P_1 \):
[tex]\[ P_1 - P_2 = (x^4 + x^3 + x^2 + x) - (x^4 - x^3 + x^2 - x) \][/tex]
3. Distribute the subtraction (subtract each term of \( P_2 \) from the corresponding term in \( P_1 \)):
[tex]\[ P_1 - P_2 = x^4 + x^3 + x^2 + x - x^4 + x^3 - x^2 + x \][/tex]
4. Combine the like terms:
[tex]\[ = (x^4 - x^4) + (x^3 + x^3) + (x^2 - x^2) + (x + x) \][/tex]
[tex]\[ = 0 + 2x^3 + 0 + 2x \][/tex]
5. Simplify the expression to get the final result:
[tex]\[ = 2x^3 + 2x \][/tex]
So, the difference of the polynomials \( \left(x^4 + x^3 + x^2 + x\right) - \left(x^4 - x^3 + x^2 - x\right) \) is:
[tex]\[ 2x^3 + 2x \][/tex]
Therefore, the correct answer is:
[tex]\[ 2x^3 + 2x \][/tex]
We need to calculate the difference between the two polynomials:
[tex]\[ P_1 = x^4 + x^3 + x^2 + x \][/tex]
and
[tex]\[ P_2 = x^4 - x^3 + x^2 - x \][/tex]
To find the difference \( P_1 - P_2 \), we will subtract \( P_2 \) from \( P_1 \):
1. Write down both polynomials:
[tex]\[ P_1 = x^4 + x^3 + x^2 + x \][/tex]
[tex]\[ P_2 = x^4 - x^3 + x^2 - x \][/tex]
2. Subtract \( P_2 \) from \( P_1 \):
[tex]\[ P_1 - P_2 = (x^4 + x^3 + x^2 + x) - (x^4 - x^3 + x^2 - x) \][/tex]
3. Distribute the subtraction (subtract each term of \( P_2 \) from the corresponding term in \( P_1 \)):
[tex]\[ P_1 - P_2 = x^4 + x^3 + x^2 + x - x^4 + x^3 - x^2 + x \][/tex]
4. Combine the like terms:
[tex]\[ = (x^4 - x^4) + (x^3 + x^3) + (x^2 - x^2) + (x + x) \][/tex]
[tex]\[ = 0 + 2x^3 + 0 + 2x \][/tex]
5. Simplify the expression to get the final result:
[tex]\[ = 2x^3 + 2x \][/tex]
So, the difference of the polynomials \( \left(x^4 + x^3 + x^2 + x\right) - \left(x^4 - x^3 + x^2 - x\right) \) is:
[tex]\[ 2x^3 + 2x \][/tex]
Therefore, the correct answer is:
[tex]\[ 2x^3 + 2x \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.
I have settled in Mexico to help convert the Native Americans to Catholicism.What best describes me?