Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the correct expression for finding the sum of the polynomials \( \left(9 - 3x^2\right) + \left(-8x^2 + 4x + 5\right) \), we need to sum the corresponding coefficients of the terms.
Let's break down the problem step by step:
1. Identify and sum the constant terms:
- From the first polynomial \(9 - 3x^2\), the constant term is \(9\).
- From the second polynomial \(-8x^2 + 4x + 5\), the constant term is \(5\).
Adding the constant terms:
[tex]\[ 9 + 5 = 14 \][/tex]
2. Identify and sum the linear terms (the coefficients of \(x\)):
- From the first polynomial \(9 - 3x^2\), there is no linear term (the coefficient of \(x\) is \(0\)).
- From the second polynomial \(-8x^2 + 4x + 5\), the linear term is \(4x\).
Adding the linear terms:
[tex]\[ 0 + 4 = 4 \][/tex]
So, the linear term in the sum is \(4x\).
3. Identify and sum the quadratic terms (the coefficients of \(x^2\)):
- From the first polynomial \( 9 - 3x^2\), the quadratic term is \(-3x^2\).
- From the second polynomial \(-8x^2 + 4x + 5\), the quadratic term is \(-8x^2\).
Adding the quadratic terms:
[tex]\[ -3x^2 + (-8x^2) = -11x^2 \][/tex]
Putting it all together, the sum of the polynomials is:
[tex]\[ 14 + 4x - 11x^2 \][/tex]
Now, let’s match this result with the given options:
1. \(\left(9 - 3x^2\right) + \left(-8x^2 + 4x + 5\right)\)
2. \(\left[\left(-3x^2\right) + \left(-8x^2\right)\right] + 4x + [9 + (-5)]\)
- Notice that this sums the quadratic terms incorrectly as \(-3x^2 + (-8x^2)\), which is correct.
- However, it combines the constants incorrectly: \( 9 + (-5) \).
3. \(\left[3x^2 + 8x^2\right] + 4x + [9 + (-5)]\)
- This option sums the quadratic terms as \(3x^2 + 8x^2\), which is incorrect.
4. \(\left[3x^2 + \left(-8x^2\right)\right] + 4x + [9 + 5]\)
- This option sums the quadratic terms as \(3x^2 + (-8x^2)\), which is incorrect, the sum should be \(-3x^2 + (-8x^2)\).
5. \(\left[\left(-3x^2\right) + \left(-8x^2\right)\right] + 4x + [9 + 5]\)
- This option sums the quadratic terms correctly: \(-3x^2 + (-8x^2) = -11x^2\).
- It sums the constants correctly: \(9 + 5 = 14\).
Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
Let's break down the problem step by step:
1. Identify and sum the constant terms:
- From the first polynomial \(9 - 3x^2\), the constant term is \(9\).
- From the second polynomial \(-8x^2 + 4x + 5\), the constant term is \(5\).
Adding the constant terms:
[tex]\[ 9 + 5 = 14 \][/tex]
2. Identify and sum the linear terms (the coefficients of \(x\)):
- From the first polynomial \(9 - 3x^2\), there is no linear term (the coefficient of \(x\) is \(0\)).
- From the second polynomial \(-8x^2 + 4x + 5\), the linear term is \(4x\).
Adding the linear terms:
[tex]\[ 0 + 4 = 4 \][/tex]
So, the linear term in the sum is \(4x\).
3. Identify and sum the quadratic terms (the coefficients of \(x^2\)):
- From the first polynomial \( 9 - 3x^2\), the quadratic term is \(-3x^2\).
- From the second polynomial \(-8x^2 + 4x + 5\), the quadratic term is \(-8x^2\).
Adding the quadratic terms:
[tex]\[ -3x^2 + (-8x^2) = -11x^2 \][/tex]
Putting it all together, the sum of the polynomials is:
[tex]\[ 14 + 4x - 11x^2 \][/tex]
Now, let’s match this result with the given options:
1. \(\left(9 - 3x^2\right) + \left(-8x^2 + 4x + 5\right)\)
2. \(\left[\left(-3x^2\right) + \left(-8x^2\right)\right] + 4x + [9 + (-5)]\)
- Notice that this sums the quadratic terms incorrectly as \(-3x^2 + (-8x^2)\), which is correct.
- However, it combines the constants incorrectly: \( 9 + (-5) \).
3. \(\left[3x^2 + 8x^2\right] + 4x + [9 + (-5)]\)
- This option sums the quadratic terms as \(3x^2 + 8x^2\), which is incorrect.
4. \(\left[3x^2 + \left(-8x^2\right)\right] + 4x + [9 + 5]\)
- This option sums the quadratic terms as \(3x^2 + (-8x^2)\), which is incorrect, the sum should be \(-3x^2 + (-8x^2)\).
5. \(\left[\left(-3x^2\right) + \left(-8x^2\right)\right] + 4x + [9 + 5]\)
- This option sums the quadratic terms correctly: \(-3x^2 + (-8x^2) = -11x^2\).
- It sums the constants correctly: \(9 + 5 = 14\).
Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.