Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the value of [tex]\sin \left(\frac{7 \pi}{6}\right)[/tex]:

A. [tex]\frac{1}{2}[/tex]
B. [tex]-\frac{\sqrt{3}}{2}[/tex]
C. [tex]-\frac{1}{2}[/tex]
D. [tex]\frac{\sqrt{3}}{2}[/tex]


Sagot :

To solve the problem of finding \(\sin\left(\frac{7\pi}{6}\right)\), let's follow these steps:

1. Determine the Quadrant:
The angle \(\frac{7\pi}{6}\) is in radians, and it can be converted to degrees for better understanding:
[tex]\[ \frac{7\pi}{6} \times \frac{180^\circ}{\pi} = 210^\circ \][/tex]
The angle 210 degrees is located in the third quadrant of the unit circle.

2. Identify the Reference Angle:
To find the reference angle, we need to subtract 180 degrees (as 210 degrees is 30 degrees beyond 180 degrees):
[tex]\[ 210^\circ - 180^\circ = 30^\circ \][/tex]
So, the reference angle is 30 degrees (or \(\frac{\pi}{6}\) radians).

3. Sine in the Third Quadrant:
In the third quadrant, the sine function is negative. So, we need to consider the sine of the reference angle with a negative sign.
[tex]\[ \sin(210^\circ) = -\sin(30^\circ) \][/tex]

4. Value of \(\sin(30^\circ)\) or \(\sin\left(\frac{\pi}{6}\right)\):
We know from trigonometric values that:
[tex]\[ \sin(30^\circ) = \frac{1}{2} \][/tex]

5. Combine the Results:
Since \(\sin(210^\circ)\) is negative in the third quadrant:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]

6. Choose the Correct Option:
From the given options:
[tex]\[ \begin{array}{ll} \text{A.} & \frac{1}{2} \\ \text{B.} & -\frac{\sqrt{3}}{2} \\ \text{C.} & -\frac{1}{2} \\ \text{D.} & \frac{\sqrt{3}}{2} \\ \end{array} \][/tex]
The correct answer is:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]
Hence, the correct choice is:
[tex]\[ \boxed{C} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.