Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem of finding \(\sin\left(\frac{7\pi}{6}\right)\), let's follow these steps:
1. Determine the Quadrant:
The angle \(\frac{7\pi}{6}\) is in radians, and it can be converted to degrees for better understanding:
[tex]\[ \frac{7\pi}{6} \times \frac{180^\circ}{\pi} = 210^\circ \][/tex]
The angle 210 degrees is located in the third quadrant of the unit circle.
2. Identify the Reference Angle:
To find the reference angle, we need to subtract 180 degrees (as 210 degrees is 30 degrees beyond 180 degrees):
[tex]\[ 210^\circ - 180^\circ = 30^\circ \][/tex]
So, the reference angle is 30 degrees (or \(\frac{\pi}{6}\) radians).
3. Sine in the Third Quadrant:
In the third quadrant, the sine function is negative. So, we need to consider the sine of the reference angle with a negative sign.
[tex]\[ \sin(210^\circ) = -\sin(30^\circ) \][/tex]
4. Value of \(\sin(30^\circ)\) or \(\sin\left(\frac{\pi}{6}\right)\):
We know from trigonometric values that:
[tex]\[ \sin(30^\circ) = \frac{1}{2} \][/tex]
5. Combine the Results:
Since \(\sin(210^\circ)\) is negative in the third quadrant:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]
6. Choose the Correct Option:
From the given options:
[tex]\[ \begin{array}{ll} \text{A.} & \frac{1}{2} \\ \text{B.} & -\frac{\sqrt{3}}{2} \\ \text{C.} & -\frac{1}{2} \\ \text{D.} & \frac{\sqrt{3}}{2} \\ \end{array} \][/tex]
The correct answer is:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]
Hence, the correct choice is:
[tex]\[ \boxed{C} \][/tex]
1. Determine the Quadrant:
The angle \(\frac{7\pi}{6}\) is in radians, and it can be converted to degrees for better understanding:
[tex]\[ \frac{7\pi}{6} \times \frac{180^\circ}{\pi} = 210^\circ \][/tex]
The angle 210 degrees is located in the third quadrant of the unit circle.
2. Identify the Reference Angle:
To find the reference angle, we need to subtract 180 degrees (as 210 degrees is 30 degrees beyond 180 degrees):
[tex]\[ 210^\circ - 180^\circ = 30^\circ \][/tex]
So, the reference angle is 30 degrees (or \(\frac{\pi}{6}\) radians).
3. Sine in the Third Quadrant:
In the third quadrant, the sine function is negative. So, we need to consider the sine of the reference angle with a negative sign.
[tex]\[ \sin(210^\circ) = -\sin(30^\circ) \][/tex]
4. Value of \(\sin(30^\circ)\) or \(\sin\left(\frac{\pi}{6}\right)\):
We know from trigonometric values that:
[tex]\[ \sin(30^\circ) = \frac{1}{2} \][/tex]
5. Combine the Results:
Since \(\sin(210^\circ)\) is negative in the third quadrant:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]
6. Choose the Correct Option:
From the given options:
[tex]\[ \begin{array}{ll} \text{A.} & \frac{1}{2} \\ \text{B.} & -\frac{\sqrt{3}}{2} \\ \text{C.} & -\frac{1}{2} \\ \text{D.} & \frac{\sqrt{3}}{2} \\ \end{array} \][/tex]
The correct answer is:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]
Hence, the correct choice is:
[tex]\[ \boxed{C} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.