Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the end behavior of the function \( f(x) \), we need to analyze the trends in the values of \( x \) and \( f(x) \) given in the table. The table provides the following values:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline f(x) & 14 & 6 & 0 & -4 & -6 & -6 & -4 & 0 & 6 \\ \hline \end{array} \][/tex]
From the table, we observe the following:
1. As \( x \) increases from \(-5\) to \(3\), the function \( f(x) \) starts at \( 14 \), decreases to \( -6 \) around \( x = -1 \), and then increases back to \( 6 \) as \( x \) reaches \( 3 \).
2. This pattern suggests that \( f(x) \) tends to increase again as \( x \) continues to grow positively.
3. Similarly, If we consider \( x \) becoming more negative from \(-5\) onwards, \( f(x) \) is seen to start high at \( 14 \), decrease significantly, and shows a potential to start increasing beyond the given negative values.
Based on these observations, the trend indicates:
- As \( x \rightarrow \infty \), \( f(x) \rightarrow \infty \)
- As \( x \rightarrow -\infty \), \( f(x) \rightarrow \infty \)
So, the statement that best describes the prediction for the end behavior of the graph of \( f(x) \) is:
"As \( x \rightarrow \infty, f(x) \rightarrow \infty \), and as \( x \rightarrow-\infty, f(x) \rightarrow \infty \)"
This corresponds to the second choice:
"As [tex]\( x \rightarrow \infty, f(x) \rightarrow \infty \)[/tex], and as [tex]\( x \rightarrow-\infty, f(x) \rightarrow \infty \)[/tex]"
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline f(x) & 14 & 6 & 0 & -4 & -6 & -6 & -4 & 0 & 6 \\ \hline \end{array} \][/tex]
From the table, we observe the following:
1. As \( x \) increases from \(-5\) to \(3\), the function \( f(x) \) starts at \( 14 \), decreases to \( -6 \) around \( x = -1 \), and then increases back to \( 6 \) as \( x \) reaches \( 3 \).
2. This pattern suggests that \( f(x) \) tends to increase again as \( x \) continues to grow positively.
3. Similarly, If we consider \( x \) becoming more negative from \(-5\) onwards, \( f(x) \) is seen to start high at \( 14 \), decrease significantly, and shows a potential to start increasing beyond the given negative values.
Based on these observations, the trend indicates:
- As \( x \rightarrow \infty \), \( f(x) \rightarrow \infty \)
- As \( x \rightarrow -\infty \), \( f(x) \rightarrow \infty \)
So, the statement that best describes the prediction for the end behavior of the graph of \( f(x) \) is:
"As \( x \rightarrow \infty, f(x) \rightarrow \infty \), and as \( x \rightarrow-\infty, f(x) \rightarrow \infty \)"
This corresponds to the second choice:
"As [tex]\( x \rightarrow \infty, f(x) \rightarrow \infty \)[/tex], and as [tex]\( x \rightarrow-\infty, f(x) \rightarrow \infty \)[/tex]"
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.