Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To identify the rule of the given table, we need to determine the relationship between \( x \) and \( y \).
Given the table:
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 7 \\
\hline
2 & 22 \\
\hline
3 & 37 \\
\hline
4 & 52 \\
\hline
5 & 67 \\
\hline
\end{tabular}
\][/tex]
We start by calculating the differences between consecutive \( y \)-values:
[tex]\[ \begin{aligned} y_2 - y_1 &= 22 - 7 = 15, \\ y_3 - y_2 &= 37 - 22 = 15, \\ y_4 - y_3 &= 52 - 37 = 15, \\ y_5 - y_4 &= 67 - 52 = 15. \end{aligned} \][/tex]
The differences are all constant and equal to 15, indicating a linear relationship between \( x \) and \( y \).
Next, we can express this relationship as a linear equation of the form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
The constant difference (slope \( m \)) is 15. To find the y-intercept (\( b \)), we use one of the points from the table. Let's use the point \( (1, 7) \):
[tex]\[ y = 15x + b. \][/tex]
Substituting \( x = 1 \) and \( y = 7 \) into the equation, we get:
[tex]\[ 7 = 15(1) + b \implies 7 = 15 + b \implies b = 7 - 15 \implies b = -8. \][/tex]
Therefore, the equation that describes the relationship between \( x \) and \( y \) is:
[tex]\[ y = 15x - 8. \][/tex]
So, the rule for the table can be written as:
[tex]\[ 15x - 8 = y. \][/tex]
In the equation:
[tex]\[ 15x - [\text{?}]= y, \][/tex]
the number that goes in the green box is:
[tex]\[ \boxed{8}. \][/tex]
Given the table:
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 7 \\
\hline
2 & 22 \\
\hline
3 & 37 \\
\hline
4 & 52 \\
\hline
5 & 67 \\
\hline
\end{tabular}
\][/tex]
We start by calculating the differences between consecutive \( y \)-values:
[tex]\[ \begin{aligned} y_2 - y_1 &= 22 - 7 = 15, \\ y_3 - y_2 &= 37 - 22 = 15, \\ y_4 - y_3 &= 52 - 37 = 15, \\ y_5 - y_4 &= 67 - 52 = 15. \end{aligned} \][/tex]
The differences are all constant and equal to 15, indicating a linear relationship between \( x \) and \( y \).
Next, we can express this relationship as a linear equation of the form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
The constant difference (slope \( m \)) is 15. To find the y-intercept (\( b \)), we use one of the points from the table. Let's use the point \( (1, 7) \):
[tex]\[ y = 15x + b. \][/tex]
Substituting \( x = 1 \) and \( y = 7 \) into the equation, we get:
[tex]\[ 7 = 15(1) + b \implies 7 = 15 + b \implies b = 7 - 15 \implies b = -8. \][/tex]
Therefore, the equation that describes the relationship between \( x \) and \( y \) is:
[tex]\[ y = 15x - 8. \][/tex]
So, the rule for the table can be written as:
[tex]\[ 15x - 8 = y. \][/tex]
In the equation:
[tex]\[ 15x - [\text{?}]= y, \][/tex]
the number that goes in the green box is:
[tex]\[ \boxed{8}. \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.