Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation \( 11^{-x + 7} = 5^{-3x} \), we’ll need to apply some logarithmic properties to isolate the variable \( x \). Here's the detailed, step-by-step solution:
1. Take the natural logarithm of both sides:
[tex]\[ \ln(11^{-x + 7}) = \ln(5^{-3x}) \][/tex]
2. Use the power rule of logarithms (\(\ln(a^b) = b \ln(a)\)):
[tex]\[ (-x + 7) \ln(11) = (-3x) \ln(5) \][/tex]
3. Expand the equation:
[tex]\[ -x \ln(11) + 7 \ln(11) = -3x \ln(5) \][/tex]
4. Isolate the terms involving \( x \):
[tex]\[ 7 \ln(11) = -3x \ln(5) + x \ln(11) \][/tex]
5. Factor \( x \) out on the right-hand side:
[tex]\[ 7 \ln(11) = x (\ln(11) + 3 \ln(5)) \][/tex]
6. Solve for \( x \) by dividing both sides by \((\ln(11) + 3 \ln(5))\):
[tex]\[ x = \frac{7 \ln(11)}{\ln(11) + 3 \ln(5)} \][/tex]
7. Evaluate the expression (note: this typically requires a calculator to get the numerical values of the logarithms):
[tex]\[ \ln(11) \approx 2.3979, \quad \ln(5) \approx 1.6094 \][/tex]
[tex]\[ x = \frac{7 \times 2.3979}{2.3979 + 3 \times 1.6094} = \frac{16.7853}{7.2261} \approx 2.322 \][/tex]
When solving exactly, recognizing constants derived from logarithms:
Thus the answer is approximately \( 2.0use \implies-8.5\approxNatural logarithm ratio \boxed{-7}
1. Take the natural logarithm of both sides:
[tex]\[ \ln(11^{-x + 7}) = \ln(5^{-3x}) \][/tex]
2. Use the power rule of logarithms (\(\ln(a^b) = b \ln(a)\)):
[tex]\[ (-x + 7) \ln(11) = (-3x) \ln(5) \][/tex]
3. Expand the equation:
[tex]\[ -x \ln(11) + 7 \ln(11) = -3x \ln(5) \][/tex]
4. Isolate the terms involving \( x \):
[tex]\[ 7 \ln(11) = -3x \ln(5) + x \ln(11) \][/tex]
5. Factor \( x \) out on the right-hand side:
[tex]\[ 7 \ln(11) = x (\ln(11) + 3 \ln(5)) \][/tex]
6. Solve for \( x \) by dividing both sides by \((\ln(11) + 3 \ln(5))\):
[tex]\[ x = \frac{7 \ln(11)}{\ln(11) + 3 \ln(5)} \][/tex]
7. Evaluate the expression (note: this typically requires a calculator to get the numerical values of the logarithms):
[tex]\[ \ln(11) \approx 2.3979, \quad \ln(5) \approx 1.6094 \][/tex]
[tex]\[ x = \frac{7 \times 2.3979}{2.3979 + 3 \times 1.6094} = \frac{16.7853}{7.2261} \approx 2.322 \][/tex]
When solving exactly, recognizing constants derived from logarithms:
Thus the answer is approximately \( 2.0use \implies-8.5\approxNatural logarithm ratio \boxed{-7}
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.