Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the domain and range of the function \( w(x) = -(3x)^{\frac{1}{2}} - 4 \), let's break it down step by step.
1. Domain:
- The expression inside the square root, \( 3x \), must be non-negative because you cannot take the square root of a negative number in the reals.
- Therefore, we set up the inequality \( 3x \geq 0 \).
- Solving for \( x \), we get \( x \geq 0 \).
Hence, the domain is \( x \geq 0 \).
2. Range:
- Next, consider the range of the function.
- The square root function, \( (3x)^{\frac{1}{2}} \), produces non-negative values (ranging from 0 to \(\infty\)).
- Multiplying by -1, \( -(3x)^{\frac{1}{2}} \), will result in non-positive values (ranging from 0 to \(-\infty\)).
- Finally, by subtracting 4, \( -(3x)^{\frac{1}{2}} - 4 \) will shift this down by 4 units, resulting in values ranging from -4 to \(-\infty\).
Hence, the range is \( w(x) \leq -4 \).
So, filling in the blanks:
- Domain: \( x \geq 0 \)
- Range: [tex]\( w(x) \leq -4 \)[/tex]
1. Domain:
- The expression inside the square root, \( 3x \), must be non-negative because you cannot take the square root of a negative number in the reals.
- Therefore, we set up the inequality \( 3x \geq 0 \).
- Solving for \( x \), we get \( x \geq 0 \).
Hence, the domain is \( x \geq 0 \).
2. Range:
- Next, consider the range of the function.
- The square root function, \( (3x)^{\frac{1}{2}} \), produces non-negative values (ranging from 0 to \(\infty\)).
- Multiplying by -1, \( -(3x)^{\frac{1}{2}} \), will result in non-positive values (ranging from 0 to \(-\infty\)).
- Finally, by subtracting 4, \( -(3x)^{\frac{1}{2}} - 4 \) will shift this down by 4 units, resulting in values ranging from -4 to \(-\infty\).
Hence, the range is \( w(x) \leq -4 \).
So, filling in the blanks:
- Domain: \( x \geq 0 \)
- Range: [tex]\( w(x) \leq -4 \)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.