Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the given problem, we need to interpret the function \( f(t) = 4t^2 - 8t + 6 \) in the context of its vertex form, which helps us identify the minimum height of the roller coaster.
First, let's rewrite the given quadratic function in its vertex form \( f(t) = a(t - h)^2 + k \).
To do this, we complete the square as follows:
1. Start with the function \( f(t) = 4t^2 - 8t + 6 \).
2. Factor out the coefficient of \( t^2 \) from the first two terms:
[tex]\[ f(t) = 4(t^2 - 2t) + 6 \][/tex]
3. To complete the square, take half of the coefficient of \( t \) (which is -2), square it, and add and subtract this value inside the parentheses:
[tex]\[ 4(t^2 - 2t + 1 - 1) + 6 \][/tex]
4. Simplify inside the parentheses:
[tex]\[ 4((t - 1)^2 - 1) + 6 \][/tex]
5. Distribute the 4 through the expression inside the parentheses:
[tex]\[ 4(t - 1)^2 - 4 + 6 \][/tex]
6. Combine the constants:
[tex]\[ f(t) = 4(t - 1)^2 + 2 \][/tex]
Now, we have the function in vertex form \( f(t) = 4(t - 1)^2 + 2 \), where \( a = 4 \), \( h = 1 \), and \( k = 2 \).
The vertex of the function is at \( (h, k) = (1, 2) \). This means that the minimum height of the roller coaster, which occurs at \( t = 1 \), is 2 meters from the ground.
Among the given choices, the correct interpretation is:
[tex]\[ f(t) = 4(t - 1)^2 + 2 \][/tex]; the minimum height of the roller coaster is 2 meters from the ground.
Thus, the correct answer is:
[tex]\( f(t) = 4(t - 1)^2 + 2 \)[/tex]; the minimum height of the roller coaster is 2 meters from the ground.
First, let's rewrite the given quadratic function in its vertex form \( f(t) = a(t - h)^2 + k \).
To do this, we complete the square as follows:
1. Start with the function \( f(t) = 4t^2 - 8t + 6 \).
2. Factor out the coefficient of \( t^2 \) from the first two terms:
[tex]\[ f(t) = 4(t^2 - 2t) + 6 \][/tex]
3. To complete the square, take half of the coefficient of \( t \) (which is -2), square it, and add and subtract this value inside the parentheses:
[tex]\[ 4(t^2 - 2t + 1 - 1) + 6 \][/tex]
4. Simplify inside the parentheses:
[tex]\[ 4((t - 1)^2 - 1) + 6 \][/tex]
5. Distribute the 4 through the expression inside the parentheses:
[tex]\[ 4(t - 1)^2 - 4 + 6 \][/tex]
6. Combine the constants:
[tex]\[ f(t) = 4(t - 1)^2 + 2 \][/tex]
Now, we have the function in vertex form \( f(t) = 4(t - 1)^2 + 2 \), where \( a = 4 \), \( h = 1 \), and \( k = 2 \).
The vertex of the function is at \( (h, k) = (1, 2) \). This means that the minimum height of the roller coaster, which occurs at \( t = 1 \), is 2 meters from the ground.
Among the given choices, the correct interpretation is:
[tex]\[ f(t) = 4(t - 1)^2 + 2 \][/tex]; the minimum height of the roller coaster is 2 meters from the ground.
Thus, the correct answer is:
[tex]\( f(t) = 4(t - 1)^2 + 2 \)[/tex]; the minimum height of the roller coaster is 2 meters from the ground.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.