At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the sum of the polynomials \((6x + 7 + x^2) + (2x^2 - 3) - x^2 + 6x + 4\), we will combine like terms from each polynomial. Let's break this process down step-by-step.
First, write down each polynomial and align the like terms (terms involving the same power of \(x\)) together:
1. \(6x + 7 + x^2\)
2. \(2x^2 - 3\)
3. \(-x^2 + 6x + 4\)
Now, we will add these polynomials together term by term.
### Combining \(x^2\) terms:
- From the first polynomial: \(+ x^2\)
- From the second polynomial: \(+ 2x^2\)
- From the third polynomial: \(- x^2\)
Combining these, we get:
[tex]\[ x^2 + 2x^2 - x^2 = 2x^2 \][/tex]
### Combining \(x\) terms:
- From the first polynomial: \(+ 6x\)
- From the second polynomial: None (\(0x\))
- From the third polynomial: \(+ 6x\)
Combining these, we get:
[tex]\[ 6x + 6x = 12x \][/tex]
### Combining constant terms:
- From the first polynomial: \(+ 7\)
- From the second polynomial: \(- 3\)
- From the third polynomial: \(+ 4\)
Combining these, we get:
[tex]\[ 7 - 3 + 4 = 8 \][/tex]
Finally, putting all the terms together, we get the sum of the polynomials:
[tex]\[ 2x^2 + 12x + 8 \][/tex]
Therefore, the sum of the polynomials \((6x + 7 + x^2) + (2x^2 - 3) - x^2 + 6x + 4\) is:
[tex]\[ \boxed{2x^2 + 12x + 8} \][/tex]
First, write down each polynomial and align the like terms (terms involving the same power of \(x\)) together:
1. \(6x + 7 + x^2\)
2. \(2x^2 - 3\)
3. \(-x^2 + 6x + 4\)
Now, we will add these polynomials together term by term.
### Combining \(x^2\) terms:
- From the first polynomial: \(+ x^2\)
- From the second polynomial: \(+ 2x^2\)
- From the third polynomial: \(- x^2\)
Combining these, we get:
[tex]\[ x^2 + 2x^2 - x^2 = 2x^2 \][/tex]
### Combining \(x\) terms:
- From the first polynomial: \(+ 6x\)
- From the second polynomial: None (\(0x\))
- From the third polynomial: \(+ 6x\)
Combining these, we get:
[tex]\[ 6x + 6x = 12x \][/tex]
### Combining constant terms:
- From the first polynomial: \(+ 7\)
- From the second polynomial: \(- 3\)
- From the third polynomial: \(+ 4\)
Combining these, we get:
[tex]\[ 7 - 3 + 4 = 8 \][/tex]
Finally, putting all the terms together, we get the sum of the polynomials:
[tex]\[ 2x^2 + 12x + 8 \][/tex]
Therefore, the sum of the polynomials \((6x + 7 + x^2) + (2x^2 - 3) - x^2 + 6x + 4\) is:
[tex]\[ \boxed{2x^2 + 12x + 8} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.