Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve each part step-by-step.
### Part (a)
To calculate the maturity value of a $15,000 term deposit for 120 days at an interest rate of 225%, we use the simple interest formula, which is:
[tex]\[ \text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time} \][/tex]
Where:
- \( \text{Principal} = \$15,000 \)
- \( \text{Rate} = 225\% = \frac{225}{100} = 2.25 \)
- \( \text{Time} = \frac{120 \text{ days}}{365 \text{ days/year}} \)
First, calculate the interest:
[tex]\[ \text{Interest} = 15,000 \times 2.25 \times \frac{120}{365} \][/tex]
Next, add the interest to the principal to find the maturity value:
[tex]\[ \text{Maturity Value (Part a)} = 15,000 + \text{Interest} \][/tex]
After evaluating the above expression, we get:
[tex]\[ \text{Maturity Value (Part a)} \approx \$26,095.89 \][/tex]
### Part (b)
For the second part, we take the maturity value from Part (a) and roll it over into a new term deposit. The new principal is the maturity value from Part (a), and we calculate the maturity value for 90 days at an interest rate of 2.15%.
Using the same formula:
[tex]\[ \text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time} \][/tex]
Where:
- \( \text{Principal} = \$26,095.89 \) (the maturity value from Part (a))
- \( \text{Rate} = 2.15\% = \frac{2.15}{100} = 0.0215 \)
- \( \text{Time} = \frac{90 \text{ days}}{365 \text{ days/year}} \)
First, calculate the interest for the second term:
[tex]\[ \text{Interest} = 26,095.89 \times 0.0215 \times \frac{90}{365} \][/tex]
Next, add the interest to the principal to find the new maturity value:
[tex]\[ \text{Maturity Value (Part b)} = 26,095.89 + \text{Interest} \][/tex]
After evaluating the above expression, we get:
[tex]\[ \text{Maturity Value (Part b)} \approx \$26,234.23 \][/tex]
### Summary
Therefore:
a. The maturity value for the $15,000 placed in a 120-day term deposit at 225% is:
[tex]\[ \$26,095.89 \][/tex]
b. The maturity value for the combined principal and interest rolled over into a 90-day term deposit at 2.15% is:
[tex]\[ \$26,234.23 \][/tex]
### Part (a)
To calculate the maturity value of a $15,000 term deposit for 120 days at an interest rate of 225%, we use the simple interest formula, which is:
[tex]\[ \text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time} \][/tex]
Where:
- \( \text{Principal} = \$15,000 \)
- \( \text{Rate} = 225\% = \frac{225}{100} = 2.25 \)
- \( \text{Time} = \frac{120 \text{ days}}{365 \text{ days/year}} \)
First, calculate the interest:
[tex]\[ \text{Interest} = 15,000 \times 2.25 \times \frac{120}{365} \][/tex]
Next, add the interest to the principal to find the maturity value:
[tex]\[ \text{Maturity Value (Part a)} = 15,000 + \text{Interest} \][/tex]
After evaluating the above expression, we get:
[tex]\[ \text{Maturity Value (Part a)} \approx \$26,095.89 \][/tex]
### Part (b)
For the second part, we take the maturity value from Part (a) and roll it over into a new term deposit. The new principal is the maturity value from Part (a), and we calculate the maturity value for 90 days at an interest rate of 2.15%.
Using the same formula:
[tex]\[ \text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time} \][/tex]
Where:
- \( \text{Principal} = \$26,095.89 \) (the maturity value from Part (a))
- \( \text{Rate} = 2.15\% = \frac{2.15}{100} = 0.0215 \)
- \( \text{Time} = \frac{90 \text{ days}}{365 \text{ days/year}} \)
First, calculate the interest for the second term:
[tex]\[ \text{Interest} = 26,095.89 \times 0.0215 \times \frac{90}{365} \][/tex]
Next, add the interest to the principal to find the new maturity value:
[tex]\[ \text{Maturity Value (Part b)} = 26,095.89 + \text{Interest} \][/tex]
After evaluating the above expression, we get:
[tex]\[ \text{Maturity Value (Part b)} \approx \$26,234.23 \][/tex]
### Summary
Therefore:
a. The maturity value for the $15,000 placed in a 120-day term deposit at 225% is:
[tex]\[ \$26,095.89 \][/tex]
b. The maturity value for the combined principal and interest rolled over into a 90-day term deposit at 2.15% is:
[tex]\[ \$26,234.23 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.