Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the coordinates of the terminal point for the given angle \( t = \frac{10\pi}{3} \), let's follow these steps:
1. Normalize the Angle:
The angle \( t = \frac{10\pi}{3} \) is greater than \( 2\pi \). To find the equivalent angle within the interval \( [0, 2\pi) \), we need to subtract multiples of \( 2\pi \) from it until the resulting angle falls within this range:
[tex]\[ \frac{10\pi}{3} - 2\pi = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]
So \( \frac{10\pi}{3} \) is equivalent to \( \frac{4\pi}{3} \) in the standard interval \( [0, 2\pi) \).
2. Determine the Coordinates on the Unit Circle:
The normalized angle \( \frac{4\pi}{3} \) is located in the third quadrant of the unit circle. The reference angle for \( \frac{4\pi}{3} \) can be found by
[tex]\[ \pi - \left( \frac{4\pi}{3} - \pi \right) = \pi - \left( \frac{4\pi}{3} - \frac{3\pi}{3} \right) = \pi - \frac{\pi}{3} = \frac{\pi}{3}. \][/tex]
The coordinates for the angle \( \frac{\pi}{3} \) are \( \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) \). Since \( \frac{4\pi}{3} \) is in the third quadrant, both the \( x \)- and \( y \)-coordinates will be negative:
[tex]\[ \left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) \][/tex]
Therefore, the coordinates of the terminal point determined by \( t = \frac{10\pi}{3} \) are \(\left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)\).
So, the correct answer is:
D. [tex]\(\left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)\)[/tex].
1. Normalize the Angle:
The angle \( t = \frac{10\pi}{3} \) is greater than \( 2\pi \). To find the equivalent angle within the interval \( [0, 2\pi) \), we need to subtract multiples of \( 2\pi \) from it until the resulting angle falls within this range:
[tex]\[ \frac{10\pi}{3} - 2\pi = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]
So \( \frac{10\pi}{3} \) is equivalent to \( \frac{4\pi}{3} \) in the standard interval \( [0, 2\pi) \).
2. Determine the Coordinates on the Unit Circle:
The normalized angle \( \frac{4\pi}{3} \) is located in the third quadrant of the unit circle. The reference angle for \( \frac{4\pi}{3} \) can be found by
[tex]\[ \pi - \left( \frac{4\pi}{3} - \pi \right) = \pi - \left( \frac{4\pi}{3} - \frac{3\pi}{3} \right) = \pi - \frac{\pi}{3} = \frac{\pi}{3}. \][/tex]
The coordinates for the angle \( \frac{\pi}{3} \) are \( \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) \). Since \( \frac{4\pi}{3} \) is in the third quadrant, both the \( x \)- and \( y \)-coordinates will be negative:
[tex]\[ \left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) \][/tex]
Therefore, the coordinates of the terminal point determined by \( t = \frac{10\pi}{3} \) are \(\left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)\).
So, the correct answer is:
D. [tex]\(\left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.