Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the coordinates of the terminal point for the given angle \( t = \frac{10\pi}{3} \), let's follow these steps:
1. Normalize the Angle:
The angle \( t = \frac{10\pi}{3} \) is greater than \( 2\pi \). To find the equivalent angle within the interval \( [0, 2\pi) \), we need to subtract multiples of \( 2\pi \) from it until the resulting angle falls within this range:
[tex]\[ \frac{10\pi}{3} - 2\pi = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]
So \( \frac{10\pi}{3} \) is equivalent to \( \frac{4\pi}{3} \) in the standard interval \( [0, 2\pi) \).
2. Determine the Coordinates on the Unit Circle:
The normalized angle \( \frac{4\pi}{3} \) is located in the third quadrant of the unit circle. The reference angle for \( \frac{4\pi}{3} \) can be found by
[tex]\[ \pi - \left( \frac{4\pi}{3} - \pi \right) = \pi - \left( \frac{4\pi}{3} - \frac{3\pi}{3} \right) = \pi - \frac{\pi}{3} = \frac{\pi}{3}. \][/tex]
The coordinates for the angle \( \frac{\pi}{3} \) are \( \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) \). Since \( \frac{4\pi}{3} \) is in the third quadrant, both the \( x \)- and \( y \)-coordinates will be negative:
[tex]\[ \left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) \][/tex]
Therefore, the coordinates of the terminal point determined by \( t = \frac{10\pi}{3} \) are \(\left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)\).
So, the correct answer is:
D. [tex]\(\left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)\)[/tex].
1. Normalize the Angle:
The angle \( t = \frac{10\pi}{3} \) is greater than \( 2\pi \). To find the equivalent angle within the interval \( [0, 2\pi) \), we need to subtract multiples of \( 2\pi \) from it until the resulting angle falls within this range:
[tex]\[ \frac{10\pi}{3} - 2\pi = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]
So \( \frac{10\pi}{3} \) is equivalent to \( \frac{4\pi}{3} \) in the standard interval \( [0, 2\pi) \).
2. Determine the Coordinates on the Unit Circle:
The normalized angle \( \frac{4\pi}{3} \) is located in the third quadrant of the unit circle. The reference angle for \( \frac{4\pi}{3} \) can be found by
[tex]\[ \pi - \left( \frac{4\pi}{3} - \pi \right) = \pi - \left( \frac{4\pi}{3} - \frac{3\pi}{3} \right) = \pi - \frac{\pi}{3} = \frac{\pi}{3}. \][/tex]
The coordinates for the angle \( \frac{\pi}{3} \) are \( \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) \). Since \( \frac{4\pi}{3} \) is in the third quadrant, both the \( x \)- and \( y \)-coordinates will be negative:
[tex]\[ \left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) \][/tex]
Therefore, the coordinates of the terminal point determined by \( t = \frac{10\pi}{3} \) are \(\left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)\).
So, the correct answer is:
D. [tex]\(\left( -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.